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FOREW .D

Because of its demand for both scientific depth and

broad inter-disciplinary perspective, the field of Space

Technology offers a unique opportunity and challenge to

the scientist-englneer.

We have seen remarkable gains in the last ten years

in such diverse areas as scientific program management or

Systems Analysis, and in the development of small highly

reliable electronic equipment such as that used in

communication satellites. In both examples, the impetus

for the gains came largely from requirements for space

systems, but the resulting benefits will be felt in many

unrelated fields.

Today, Space Technology represents a focal point in

the development of highly sophisticated scientific systems,

and we hope that this Summer Institute will be of value

in delineating the problem areas and in indicating some

of the exciting prospects of a future in the field. _ "

J_h_ Laufer

Pr_essor and Chairman
Department of Aerospace Engineering
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PREFACE

This is one of six courses given in the Third Space Technology Summer

Institute. The purpose of this course is to present an introduction to the

topics of Space Trajectories and Propulsion. In previous years, a separate

course in propulsion was given, but the material was combined with orbital

mechanics this year in order to allow for courses in both Spacecraft Mechanical

Design and Space Systems Engineering: The primary purpose of the course was

to give sufficient background in the two areas so that the design parameters

could be understood, but detailed descriptive material was not presented.

Qualitative material was available through the use of reading assignments

f_om Gl_tone. 1 which was furnished to the students.

The basic material presented in these notes is _¢ailable in many text-

books in orbital mechanics and gas dynamics. The notation used here is largely

similar to that of Berman, 2 while more detail in the gas dynamics area can

be found in such books as Liepman and Rashko.3 The discussion of optimum

launch procedures used can be amplified greatly by reading the Section by

Freed in Space Technology. 4 The material in Gemini Rendezvous is from a

N.A. S.A. paper by Culpepper and Bordano. 5
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ORBITALMECHANICS

i. Kepler - Newton Deductions Regarding the Two Body Broblem

The subject of orbital mechanics has a long history and owes much to the

observations of Kepler and of the analysis of Newton.

Kepler formulated three laws which were observed to be obeyed by the

planets of the sun. They were:

i. The orbits of the planets are ellipses with the sun as
the focus.

2. The rate at which area is swept out by the line joining

the sun to the planet is constant.

3. The period of the orbit of the planet is proportional

to the three halves power of the semi-major axis of the
orbit.

These three laws, combined with the Newtonian mechanics were essential

in the understanding of classical orbital mechanics.

One of the first questions which might be asked is: In what coordinate

system are these observations valid? This is not a trivial question and will

lead to some thought in defining an "inertial frame of reference." We will

simply define an inertial frame of reference as one wherein Newton's equations

of motion are assumed to hold, with the assumption that relativistic effects

can be ignored. The coordinate system in which the Kepler laws will be

considered is called a "Heliocentric Coordinate System." This system is sun

centered, has one coordinate plane in the plane of the earth's axis (plane

of the ecliptic), and has a particular direction in this plane defined by the

intersection of the earth's equatorial plane with the ecliptic. This direction

is called the vernal equinox.



In examining Kepler's laws, one notes first that the statement of the first

law implies that the orbit is planar, and that the sun plays a rather central

role Consequently, we shall e<aminethe form of Newton's equations in plane

polar coordinates. These equations maybe derived simply by the so called

"generalized coordinates," but we shall derive them in a more elementary form,

since the interpretation of the componentswill be more intuitive.

%

The equations of transfer are t _' _ Ir'__....@'_) _ _'_'7

In the inertial frame of reference, a vector can be decomposed in many

l

ways. For example, a vector U _an be written as:

Where ix, ly are unit vectors in the direction of increasing x and y, and

_r, T_are unit vectors in the direction of increasing r and 0 U r andUe

are rel_ted to U:_ andUy through

The velocity vector

-2-



r and r_then represent the instantaneous decomposition of the velocity

into the radial and circumferential derections.

Similarly the acceleration:

z.f
( r_r_ + ,/_ ÷ " ? _,) _

If # is constant, we refer to the term -r@ 2 in ar as the centripetal

acceleration, and to the term,2r_'in _ as the Coriolis acceleration.

Note that

/, ,.¢-"

r29 can be identified as the magnitude of the specific angular momentum of the

particle about the origin. It also has another interpretation. Consider the

area swept out by the radius vector.

I

Set us apply these results to the orbital mechanics problem.

given planet in the plane of its orbit we say: £n__

A will be a function of time and:

For a

Where

radial and tangential components to yield;

(,-

i--'- is the applied force. This equation can be decomposed into its

-3-



We recall Kepler's second law

or O
From this we deduce the property that the applied force on the planet has

no component in the tangential direction, since from equation(l,8_

Kepler's second law then implies that the force which attracts the planet to

the su_ is a Centra] force. That is, it is a force which is directed towards

the sun. For a given orbit of this type we will define

r=e= p- (,,,=,:,
We are left w:ith the remaining equation

And the knowledge that the orbits are ellipses_ with the sun at the focus.

Let us review a part of analytic geometry with the idea of defining an

ellipse in polar coordinates. Recall that an ellipse can be defined as the

locus of points in a plane such that the ratio of the distance from a given

point (focus) to the distance from a given line (direction) is equal to a

constant _Io _ is called the eccentricity.

This may be represemted in the form ;
r r _=6

,_,_" L

Where the notation is defined in figure 5

_,., f.= ._e

-4-



Recall a different form for the definition of an ellipse.

C,'oci: a t

&L-

a is called the semi-major axis, and by inspection

/,13

Hence we may write

Now

Then

Z_-_ &-£mJ , and we shall use as our standard form.

r"= .__('-_)

,,+_:,,p-e<,) _ r,,.,,_:;""<:=_,,<',---_)_ O+-_J _-,'63_._ ] ,.i_
:. a<',-_3_ _-D3,+_ _,s:8-B,)._ ,o._(_ - w,.J_ = f __ /./6

a O- e)

o gt- e") _ "_ a D- e')

We have established that, at least for a particular orbit, the applied

force is proportional to _z and is directed towards the sun.

Consider now the third law

Where T is the period of the orbit, and K is a constant of proportionality

such that equation (1.9) holds true for the planets of the sun. We can compute

the period by noting that the rate at which area is swept out by the radius

vector is constant and equal to "_ .

The total area of the ellipse will be swept out in one period.

wT--- :,,_ --r6-/. e_- • a'-

Then P---- _J/T-#_._ _ //i..-

and the right hand side of equation (1.18) becomes

Hence,

/,ZZ_

-5-



The attractive force of the sun on a planet is then proportional to the

mass of the planet, inversely proportional to r _ , and the constant of

proportionality is independent of the orbit chosen.

Newton postulated a law of gravitational attraction such that the two

masses _t and

is a
_ , where r universal gravitational constant

previously determined value of K (from observation)

)

f_attract each other mutually with a force of magnitude

For the sun, with the

/,z/

Consider now, application to a system in which _l and _are not

sufficiently different in magnitude that one mass can be considered to be

standing still.

Introduce a polar coordinate system with center at the center of gravity

or Barycenter of the two body system, as in figure 7.

F9 _/

S-

Hence, we can write

ew

Now, equation (1.24) is identical in form to the previously studied

restricted problem, but the attractive mass has been replaced by the sum

of the two masses, and _ is not measured from a stationary point in inertial

-6-



2. Concept of a Gravitational Potential

A force field is said to be conservative if the work done in opposing this

field around a closed contour is zero. In cartesian coordinates it:

Then the work done against this field is:

/" ?

Where _ I _ represent the starti,ng and end points of the integration

and C represents the contour over which the integration is performed. We

shall not devote much time to the subject of line inte_r%is, but will simply

note in passing that if _ ---_ implies _/_ 0 , regardless of' _ then

the field is conservative. If _j _ and _ are eontinm_sly differen-

tiable, one may show that, with certain restrictions on the domaim of validity,

an irrotational stationary field {17xF-_j_r=_is conserw_tive amL vice versa.

it can be represented as the gradient of a scalar (--_). @Furthermore,
!

will be called the potential function which generates _.

Consider the motion of a particle which accelerates under the influence of

-7-



that )

Equation (_._) is called the energy integral for a conserva_:_ve sys_ __.

The two terms on the left side are the Kenetic and Potential energy respectively.

Let us return to the system used in studying the motion of the planets about

the sun.

is located at (_j_ is given by

C _s_'X

With a sun centered cartesian system, the force on a mass '_ which

rJ
I
I

J

2.y

and it may be easily shown that this is a conservative system where

I:_ _ P:_/_..-- 2,8
7

Consequently, in the previously discussed orbits_ we should be able to

l_l the plane polar coordinate system used before,
eZ.

t ]. 2.4. Z

.# F
.2, I0

Equatio_ (_,/_) is called the energy or Vis Viva integral for the restricted

two body problem.

Certain facts are obvious.

-8-



The maximum radius will yield the minimum speed.

--
Then

And

o. _ z--m/

r= _ and:For a circular orbit

2.1y

For a parabolic orbit_ _ _ _

And the speed requi_ed to leave the gravitational system if one is at a given

radius _ is equal to the square root of two times _he speed required to keep

it in a circular orbit at that radius.

3. Gravitational Attraction With _istributed Mass

if the mass is not a point mass, but is distributed over a volume, one

uses a further postulate of Newton's; that the attractive force of a sum of

masses is equal to the vector sum of their attractive forces. Since the

operation of taking a gradient is linear_ we can either superimpose the forces

or their potentials.

Consider now the potential due to a spherical shell. The potential

due to an elementary mass is simply -- p . We then evaluate

the potential as indicated in Figure 8.

Now dm= f_z_/_J_Jflwhere _ and _are spherical coordinates

of a point on the surface, _ is the radius of the spherical shell, and

-9-



&{_ is the thickness, p is the density of the material. By the law of

Cosines, _'- J _z+4_a/_,4_ 0

L_7 " ,l_;,8 J_ Jb2
and__= _/4az6/#. 7_40L_ZQ_2_

where the absolute value is necessary to guarantee a continuous integral

between #---- O. _,_ _--72-"

- g-_.-- _e :_ 7_.

Consequently, we see that, outside the sphere, the potential is exactly

the form of a point mass potential with mass _p_which is thus equal to

the mass of the shell, and which is located at the center of the sh@ll.

On the other hand, inside the shell, the potential is independent of

position, and the resulting force will then be zero.

From this we can deduce that, outside a spherical body with spherical

symmetry, the attraction is identical to that of a point mass with the ss_e

value _s the mass of the sphere, located at the center of the sphere.

Unfortunately, the earth is not exactly a sphere, but it is quite close to

being spherical. However, to first order, and with reasonable accuracy, we can

approximate the earth's gravitational field as being spherical. The deviations

may be approximated by an expansioin terms of spherical harmonics.

To first order, then, for near earth trajectories we will consider the

earth to be approximately spherical. For purposes of calculation_ we will

use the following values for earth parameters.

Let us consider some simple questions. The ratio of moon to earth mass is

.O122, and its radius is 1738. What is one lunar g?
A

.3',/

-10-



If the mean distance from earth to moon center is 60.3 earth radii, what

is the distance from the earth center to the Barycenter?

r, = . v_2_ _ = . o/zz Lr- r,)

If the orbital period is 27.3 days, what is _/_?

7-= -_-_ I"_/_

= _/-8" /_0.5,¢ 6._} #/o_7,3

But we already know that one earth g = 9.Smeters per second, and

so that the prediction based on moon period and surface acecTer;_tion are the

same.

4. Near Earth Trajectories

In the idealized near earth free _-_i .... _ ...

will then use: r= O.(/-- _

a (,- _')

¢.)

With the previously defined parameters, we note that, near the e_rth's

surface, the circular orbital speed is _iven by:

_ = _,_#1o 6 _-

o-_ = 7 9 a'zvs 9,Z

The escape, or parabolic speed, is given by

1,3

-11-



The variation of

or

with time, or its inverse may be obtained by noting that:

E,+e _ :_-oCj

The integration may be performed directly, but we shall anticipate its

result in order to interpret the time dependence. In so doing, we define

an angle called the eccentric anomoly.

of the ellipse.

Then

And

Return to the cartesian definitions

r: "+]" : Io'( J"÷

<,'8-___.Z +8
E =,i7 A7c" ,,+_ d. (6>-<_

By differentiating (4,_) we find

U,+ _ c,,@-_..]:-
dE= dJ-_ cio

i,,<e _ 1#-_1
If' then are c<,mbined with (_._) we find:

. .l(" I _>) '/ {_.__ _ _) _/_
,o "__

iV,v,x'_e

/_ _. t-:. = _=-:-__V'-F_ '

where "to is defined such that _-_ 0 _- _o

ILl one period, _j--_/]_nd W- -_ . This is consistent with

equation (/.2/). We will apply this result subsequently. Note: A twenty-

four hour orbit would have an _- of ( _- a'Z,,,'/_ . @.2¢eX IO ,_o

Question, do we really want it to be a twenty-four hour satellite?

-12-



5. Impulsive Orbit Transfer in a Plane

A. Transfer Ellipse-Suppose that we are in a "parking orbit" which is

nearly circular (perigee= _7OO Av_, apogee= 7_JO_w_), and we wish to establish

a twenty-four hour circular orbit by two impulsive thrustings, how can we perform

the maneuver? We could conceivably fire a rocket anywhere in the parking orbit,

coast until proper altitude is reached, then fire again.

_7o /o
We shall _.ssume that the first firing will take place at either _pogee

or perigee of the parking orbit, and that the newly established "transfer"

orbit will have its =,pogee at the altitude of a twenty-four hour circular orbit.

A transfer from a circular to a circular orbit is called a Hohman transfer

maneuver.

First, define the parking ellipse and its characteristics.

_ a " I'_._, ÷ l_mw. = _7_ ° ÷ 7;.oo=/9/ 9o_ _.

_-. 036 o°/X/O-'I "
,/

We will consider _n two possibilities for a transfer orbit. For both orbits,

the apogee will be _._/II_, The two perigee radii will be 6700 and 7200 Km.

The following are characteristics of the two transfer orbits.

/4
The speed in the twenty-four hour circular orbit will be 3,o2 ,_/O_..

For the first procedure then, a velocity increment of :/._/&--'_7#/)_/O_'-'2"_'g'2"/_.

will be required at transfer apogee.

For the second procedure, _n incremental speed (, _;W_ -._) 2,/0 @= 2. _8_/0_.

will be required at transfer perigee and (_. O2-_g_'>/O2*/._/_-_will be required

at transfer apogee.

-13-



General equations for requirements for transfer from a circular orbit

to another circular orbit of different altitude are readily obtained. If the

subscript i and 2 refer to the two circular orbits and if the subscript -_

designates the transfer o_bit.

}
= _÷& /

.

• )(/-
Perturbation of_ the Orbital Equations

,57._

A perturbation to a nominal condition or state is simply a deviation from

this nominal. If this deviation is slight, the perturbation can be represented

as a linear function or functional of the cause of the deviation. The deviation

of an orbit from its nominal trajectory may be caused by disturbing forces

(i.e. radiation :pressnre_ gravatational anomolies_ small thrust devices)

or it may be caused by improper initial or injection conditions.

Let us consider the effect on a given orbit of firing a very low impulse

device with the impulse aligned with the velocity vector, and fired at perigee.

Suppose the impulse devioe delivers an increment at speed _U'which is small

compared to the local orbital speed.

We know that

e':--

/[fter firing, the speed is changed suddenly from a value _ to _,÷_g/'.

is applied instantaneously, _ cannot be changed during the firing, but

will be changed. With a small percentage change in

that there would be a small percentage change in a.

major axis d¢_.

If it

a

_ , it would be expected

We shall call the new semi-

-14'



Thenwe have, just prior to firing

)
and just after firing

We can expand both sides of the equater in the formula,
• 2- _ /

and, to first order, if we subtract equation(6.2) from (6.4), we find,

So that _- can be computed #s a linear function of 4U- It is

often not only easier, but also more accurate to compute changes by peturbation

techniques_ especially if sm_ll differences in large quantities are required.

The foregoing procedure can be made more general if we simply consider the

following:

Let _)--tff;_), and,let gf be changed by a small amount in such _ way that

is unchanged. Then how can we determine the change in a._

_'_+,,_->--÷<,_-).,;_,_ .... _._.

a__{--,__- = 2_-_-__._K-. _-
Let us consider an example. A spacecraft is in a circular ,orb:it of

altitude 200 Km. A ball is thrown backwards at _ speed of 5 meters per

second. The spacecraft makes one revolution. Where is the ball r_l_tiv< t_

the spacecraft?

/);',= 7.7_x/__"/p-<-.
Equation(6.5) becomes: (" _'4'4 z-_

_ _ _._o _x_---_ _,_" z:{_._"°'_J

_utrecallthat 7---V--_-_
By the same procedure

.47--= _ ' _ - -- /_ .II ..(_--. ,

The ball will reach the release point ten seconds before the vehicle, and

will be some fifty miles ahead of the vehicle at that point.

-15-



Onecan find the response of an orbit to an impuls@in either the radial or

tangential direction applied at _ If _ is the corresponding value of

the orbit will be changedby changing _j_ and _o . Onemay determine these

quantities by considering the variation in the equations for _) _ and

For example,

J

These three equations allow a unique solution for __and _g_.- as
e

linear fu!ictions of _ _°and r_

Up to this point, wc have been concerned only with variatior or perturbation

of fuHctional relations. Similar perturbations can be made on differential

equations, and the resulting equations will be shown to be linear.

We will consider the procedure first as applied to a simple differential

equation, then we will make a more serious application.

Suppose that we have a linear spring mass system, which at time to has a

displ:u:c'ment _o and a velocity _; Then:

The solution of th_ system is: e; •
This will be called the nominal solution.

the _o I _j and _ are not matched accurately.

Examine the question. SuppOse

_. I/

modified?

How will the resulting motion be

Since we already know the complete solution, we can use the procedures

which were just e_:._mined, -i.e.

.n---_ __"-_+_",_,_._-<",_."_,__o_"_"+_<" _"<-'_<<'°_"_-
We could, however, have pr._ceeded differently. We could have studied the

geuerati.:n of and propagation of error.
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For example, supposewe consider the system equation and assumethat/--_o_nal

Here J_ is called the "variation" of _ _ominal satisfies the

exact system, but _ satisfies the modified (in error) system.

Then, / _ {_ +,/..i-W) l_ _ 0 _t'O] _ _o "#"_:. _.y_

and + '.# m'___)/_j_ ,/,_.., , ""

Only first order terms have been retained in the differential_ equation. If

the nominal equation is subtracted from (6.15), then the equation b@comes

J: =-
...2gg_e

The solution to (6.16) subject to the initial conditions (6.17) is:

The XI_-and "9" are seen to be equal. The primary reason for studyin_
v

the variational form of the differential equation is that usually, no such

general solution to a differential equation can be explicitly displayed. The

method can be outlined in a very general form.

_Su_pose, _ _ _,_'x,,---,x., _'i l,,, t,_... )

I

and suppose a nominal solution corresponds to some set of initial corzditions

Z_ --- Xn ° , and a set of parameters _m .. . Let this solution be designated

by ._--- ,,t"_

Then for deviations in initial conditions or in values of the parameters

the perturbations satisfy.

f2_= ___ dT,+ _/_ _-.-+ _I_^, __A-_, + ..

-17-



This class of equations is often referred to as "variational eq_._ti _s."

Example- _i r_I__-- ____ _ _Pr _ &,L}

4 Cr'i)-rb J

Where _r and _-are disturbing forces with a nominal value of zero.

One technique is to solve the nominal case ( _r" _'_ and then to consider

the disturbing forces to be perturbations_ i.e.

J
These two differential equations are linear in fY-and _ . The nominal

equations are presumed to be solved so that the

of time. Consider now the special case where

For the case of a circular orbit this reduces to

/ e_d___)fr= b_-. ( f_

and _ are known functions

£-o, lJ---d_¢- . Then:

or

which is easily solved for any input _ .

For example, consider the motion of a vehicle with a low thrust engine which is

turned on suddenly. Then _r-Oj _, and _r _ constant, _> D.

The solution is of the form,

Or, examine the effect of aerodynamic drag on orbital decay of a circular

orbit. In this case, the aerodynamic drag will induce a negative value of _O-

Then: ._r_Zr , r'/e --/rb_ Z_ _,z?
,_o

If the drag is ne::_rly constant in magnitude Lf_is approximated by

_'_._-. A s.,lution t the perturbation equation of the formu]a:

)

m_y be found. With _r=O, equation (6.22) then yields,

d.ie

r_ j_ -2
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But in a circular orbit

and we find that

3_
C_=-?

The following interpretation can be given to the foregoing. Recall the

rb_ is negative. Vie find that r is chaHging at a rate _ which is ?'q

and that _ is changing at a rateC_'--_O The radius is decreasing,
#-

while the angular rate (and incidentally, also the speed) is increasing.

We have then exhibited a solution ( not necessarily the correct one) to a set

of perturbation equations. If the orbit is decaying, we would expect the

aerodynamic drag to increase with time because of the fact that with decreasing

,Lltitude the density and speed both increase. However, such an analysis might

be valid if the drag changes slowly. For example, if the percentage change in

one orbit is small compared to one, this type of analysis could be valid.

A similar result could be achieved by an intuitive procedure.

Note that: L _z _e _. __ _ _ g,#O

Where _- represents the specific kenetic plus potential energy of the orbit.

_',,,_:.,._..._',_...._r:._1,._.,_'_it,F---i_-_r_.

_er_,dynamic drag is..
0

I{yperb.J .ic 'L'r_ject.,ries7.

il , i.oi',_:cr ci.Lipt, i,,_l will be rcquired.

The work done per unit time by the

&,92_

F,r speeds in ecess >f the ]<_cal parabolic speeds, trajectories which are

The general solution to the dynamical

cqu.'_t] ,n ].s in fact"

_p-e9
r--

H __ de-e@
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If _g), the equation is hyperbolic. Wecan use the results already

tabulated for an ellipse if we allow _ and _g_. Note that f_ if

_5_-_)_ j-. These two values'o_ correspond to the two asymptotes of

the hyperb olia.

The orientation is as indicated in figure ii. The distance B is the distance

from the focus is the projection of the velocity at large distances. Now the

vis viva integral becomes,' /j..._ I_,_ff (--_'_-"---/_p _

where a is negative.

speed when _-_0

Note that -"r_Z_may be interpreted as the square of the

We shall designate _J-_-_--_ Note that at any point,

_Z

If we wish then to launch a vehicle on a journey to M_.rs, we must s_pply

sufficient speed to escape the earth's gravatation_l attraction and have sulL'i-

cient speed left to effect the orbit change from the e_rth's orbit ablaut the

sun to an orbit which would intercept the orbit of Mars.

The quantity _ may be evaluated by noting that, at _ , p=angular

momentum= _

We consider the question, what hyperbolic orbits will intercept the earth?

If we set _ _-_"'__ we find that if _-- _ _l_ ___?)_z-' _ /..f_"/ 7,3
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Where _ is evaluated at the earth's surface, that the trajectory will

intercept the earth. If _ is less th_n _o , the interception will occur.

( slowapproach)
B_ is called a collision length. Note that if

then a wide class of trajectories will be captured. If _71 ( very fast

approach ), the collision length is effectively

8. Interplanetary Trajectories

Suppose we wish to travel from the earth to Jupiter. We must first escape

the earth. After escape we must have sufficient residual speed to effect the

orbit change on the solar system to take us from the earth to Jupiter. Such

a trajectory really needs to be calculated on a computer, but, an approximation

to the requirements can be achieved by examining the operation in steps. The

procedure is mathematically that of an inner and outer expansion.

We will consider , for this calculation that the planetary orbits are

circular, and coplanar.

First, consider the solar system parameters. Jupiter has an orbit radius

of about 5.2 times the radius of the earth's orbit. The earth's orbit radius is

appr_)×imately _"_/_. We will take _m5 /,3_ X/O _°----J_S_ _ .

The earth's speed in orbit is then given by,

_--"_ _9./
_ ,,_"" _ .2. 78_/_ j._r /_ .v-_/o #

A tr_nsfer orbit (sun centered) which would have its perigee at the earth's

orbit and its apogee at Jupiter's orbit would then be defined by,

L2 = _ ,_/,.c',</_"= %_s-xlo u M

Its velocity at perigee would be given by,
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In order to effect this interception of Jupiter's orbit then we must e_-_ak

the earth's gravitational field and have a residual speed which is sufficient

to modify the orbit relative to the sun so that the vehicle orbit becomes tL_c

transfer orbit. We assume that the gravitatio_:al effect of the earth is largcly

confined to a region of the earth which is small compared to the earth's solar

trajectory. With this assumptidn we decouple the two gravitational effects

and say that the trajectory should leave the earth with

If the vehicle were fired from a parking orbit, the required speed at

burnout would be _'

1, _i,l Vi O Si

LG..¢-"

9. Orbit Determination

In the idealized near earth situation, there is a six parameter family of

trajectories which can be defined in geocentric coordinates. If we write the

governing equations in the form:

$./

u t,-3
%

i: - ,"'<"'÷ / >"-
I,

We are considering three simultaneous second order equations, _nd si×

initial conditions are necessary to perform an integration starting at #_.

If we consider the elliptic trajectories themselves we find five geometrical

parameters. The intrinsic properties of the ellipse itself are defined by the

two parameters _ and _ There are then three parameters required to define

the orientation of the ellipse. These are _ , the inclination of the orbit,
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__ the _ngle between the vernal equine,, %ndthe ascendins n:_de of the _rbit_

and _ , the angle between the line of apsides and the ascending node

•
The si_:th parameter is not geometrical but is the time" ]oc_t-io;l re].:_t]on in

the orbit itself. If, for example, rendezvous is to be perf_u'mod, tile time is

an essential part of the program. How then is orbit determination performed?

First, what data is available?

i.

.

Line of sight measurements. These would be either optical

or radar, but are primarily a measurement of local azimuth

and elevation. They can, in turn, be transformed to ge_'e£ntr:ic

coordinates if local latitu_e_ longitude, and time are knt_:m.

Range and angle rate data. These are primarily obtained by a

coded pulse and a doppler shift. If the distance of the vehicle

from the point of observation is large, this data is usually

more accurate than angle data.

What then is an acceptable procedure for orbit determination? If the

gravitational attraction were exactly spherically symmetrical inverse square

law, and if six measurements were made exactly, these should be sufficient to

determine the orbit precisely. However, there are difficulties such as:

i. The gravitational attraction is not ideal. Furthermore,

any aerodynamic effect, although small, would cause a

perturbation of the orbit.

, Measurement techniques are inexact. Consequently, the usually

accepted procedure for orbit determinatio_ is one wherein the

governing equations are approximated as carefully as possible,
and a highly redundant set of measurements is used to determine

the best fit of the assumed form of the trajectory to the observed
data.

This technique, with high redundancy can in fact be used to determine more

accurately, the form of the gravitational attraction. In general, the technique

-23-



is one wherein an estimate is madeof the trajectory, further measurementsare

madeand correlated and a revision of the estimate is effected. Further

measurementcan be used for a next correction, etc.

The pr_)blemof pr Jper assessment of data with noise and the processing

f this data to effect an ',rbit determination is a sophisticated e_,<ercise in

m_themat_eal statistics.

In _ simpl_fied f_rm the procedure is one in which the parameters of the

pr blem (s<y the- si_ ]nit,a] conditions) are to be determined. One can make an

_nitia] rstim_tc, men,sure the trajectory and define so_e kind of an error

si_rla]. This might be_ f_r example, the output of a time integral of some

s]_'iH:_l. If f'_r er _,mple, a d<_pp]er measurement is to be used one can construct

a predicte_l si_na] _nd c_mpare it to a measured signal. The error signal

could then be defined as some functional of the difference. For e:<ample, if

measur<_d signal is _{_)and the predicted signal is _) , we can definethe

where _e) ts a positive definite weighting function.

Now _ is a function of the six initial conditions. The task can then

be defined as the determination of the six initial conditions such that 6 will

be minimized. The definition of such items as the best weighting function, and

of the best wsy to continually update the estimate will not be considered here.

Rendezw_us Pr_ject Gemini IX

I. Gemini Atl%s Agenz Target Vehicle Launch near circular orbit. 161 nautical

mile altitude at an inclination of 28.87 °.

2. Gemini-Titan launch

$7 N.M. perigee, 146 N.M..apogee at injection. It trails target by 624 N.M.
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3. Phase adjustment. _ _=_3_positive at first apogee. Raises perigee to

116 N.M. Reduces catchup rate from 6.7°/ orbit to 4.5o/ orbit.

4. Spacecraft correction combined orbit. Phasing-height- out of plane

adjustment. Correction (estimate about 5 ft. per sec. required). (trails

by 177.8 N.M.) (23 minutes before second apogee).

5. Co-Elliptical maneuver (near second apogee) brings perigee up to apogee

altitude, and any remaining out of plane motion is annulled. 52.9 feet

per sec. _ _ . Vehicle trails spacecraft by 134 N.M.

6. Switch to rendezvous mode and wait about 62 minutes prior to initiating

intercept trajectory.

7. Terminal phase initiation. At range of about 32 N.M., initial a 32.4

feet per second impulse, along_._%(27 ° up). (wt=130 °)

8. Twelve minutes after the impulse. (wt=81.8 °) an intermediate correction

3 feet per second is applied. After another 12 minutes, a 4 feet per second

correction is applied. Here the range is about 4 N.M.

9. Terminal Phase Velocity matching required is 42 feet per second, but is

handled by pilot- semi optical technique.
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ROCKET PROPULSION

i. Basic Concepts

A rocket is simply a device which expels mass from a vehicle in a given

direction with a relative speed so that thrust is achieved.

Consider a vehicle in free space with a mass m{_)which moves in a straight

line with speed _ , and expels mass backwards at a rate--_(_) with an exit

speed C. With no external forces acting on the vehicle, the momentum of the

vehicle and wake will be independent of time.

of the vehicle in the direction of motion is:

d

The rate of change of momentum

The rate of change Of momentum of the wake is simply the rate at which

momentum is added through mass addition:

Consequently

= 7-- I.y

The term on the right hand side of /0_ is often referred to as the

vacuum thrust,

In general, the speed C is a function of the propellant and nozzle design,

and in many applications, can be assumed to be independent of the burning rate.

With this assumption, equation_ can be integrated to yield:

A_

Where the subscript e designates the initial conditions.

can in general be achieved through high exit speeds C and large ratios of

initial to burnout mass.

High speeds
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Wewill find the concept of impulse to be useful. Impulse is defined as

the time integral of a force and has the dimensions of ]b sec.

Recall that in one dimensional Newtonian mechanics:

where

so theft _-

And the impulse is _ measure _f the change in momentum.

A7

In rocket engines, the Specific Impulse, Isp, is defined as the impulse

delivered divided of the weight. _'_,

(eo II..,

consequently:

Where g is the acceleration of gravity at the surface of the earth.

By definition Isp has the dimension of seconds.

It should be emphasized that this is the zero back pressure value which

has been used up to this time.

The rocket designer is, among other things, charged with obtaining a design

for which the corresponding Isp is large. A good typical value for a chemical

propellant rocket emgine is 300 sec. We will examine the thermodynamic base

of th_s st:_teme_it s_bsequemtly.

Calcul:i_tiom: Suppose a rocket engine has an Isp of 300 sec., and a velocity

change of 25,000 ft/sec is required, what is the minimum mass ratio attainable?

A-,_,_ /_.
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With this class of specific _mpulses, it is obvious that a very large mass

will be required to inject a significant mass into orbit.

2. Thermodynamics and Gas Dynamics

We will consider the quasi-one dimensional steady form of the gas dynamic

equations. These equations will be the continuity, momentum, and energy

equations. We shall consider only the inviscid form of the equations, and not

consider dissipative effects. Much of the qualitative and approximate quanti-

tative character of the flow m_y be obtained from these equations. We consider

a {_as f_ ,i _r _n idealized gas with a streamtube area A which is a function of

distance <. The velocity u, temperature T, and density _ will be needed to

characterize the flow. f_(_)

,_ /

The continuity equation becomes

The momentum equation may be obtained rather easily by Newtonian force-

momentum balance in three dimensior_s and will be found in any book in flu_id

mechanics.

In one dimensional form, the conservation of momentum equation becomes:

In order to discuss the energy equation we recall the form of the first

law of thermodyns_nics which states:

Where d_- is the her_t added_ _ is the internal energy, p is the pressure

and'V'is the volume. _-_-_ is the enthalpy of the gas. If we take the

form of equation (2.3) which refers to a unit mass, we obtain:
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._ dp
Where the unbarred variables refer to the specific value, or value per unit mass.

For a perfect gas, recall that

P--peT-
( R is universal gas constant divided by the molecular weight)

But

Ce - Cv ÷ ,e
_--Cp - cv 2,7

Also_ recall that the entropy S is a property of state and is defined through-

For a perfect gas

And we define the ratio ._._ = "_ J _,/o

Specifically, in classical statistical thermodynamics it is shown that

p.. -_- _.//

Where N is the number of degrees of freedom of a molecule. For a classical

monstonic gas, N=3 and

For a di tomic gas such as oxygen or nitrogen, N=5. (three displacement, two

angles)
_ = ..Z _-). p,

These results do not account for certain quantum mechanical effects. For

example, in a diatomic molecule, there is a vibrational degree of freedom

which is not of significance at normal temperatures, but which, at elevated

temperatures can contribute the effect of two additional degrees of freedom,

for an effective_of. .._. =_,_
7
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At high temperatures other effects such as ionization and dissociation o-_s_

sufficient deviation from perfect gas behsvior that it becomes difficult to

define aunique value of_.

In the absence of losses the energy equation can be found by noting that,

in a steady state, the net energy flow into _ given volume is zero. In our one

dimensional formulation, this becomes:

The quantity _4_ _is called the ?otal e_tha!_y, of the fl0w.

We will examine equation (_,/_-)for the case of a perfect gas, Equation (_/_-)

then becomes:

L'pz"= --

Here T O is called the total or stagnation temperature and is the value

achieved when _=o. _ is c_,lled the limiting speed and is the speed which

w:n_id be reached _f _-_g_. _q_is actually an upper bound for the effective

co_,h_'_ustvelocity C which was defined in expansion through a convergent divergent

n _zzle from _n ei'fcctively motionless combustion chamber. By examining this

relation, it is rather easy to show some of the important parameters associated

with ._ r_,c ct fuel, since we might expect that specific impulse is almost

directffy prop_rtional to _ , and high specific impulse would then be related

to a high value of _p _ The attainable temperature T o is obviously a function

of the particul,_r propellant and, but available adiabatic flame temperatures

tend to run into a regimen of about 5000 ° F. This is obviously a high temperature

for most available structural materials, and considerable effort is needed to

ssure proper thermal protection for the structure.

K is the Boltzmann cons-_ant, and m.is the molecular weight of the gas under

considcrntJ _m.
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It is evident that high values of Cp correspond to low values of m, and to

close to one.

Consider a calculation in which m=25_ To= 5400 ° R and r--l.21.

T_ - _ ,_--7 x l_O . _-_'oo -= i, zflo:/_- _

us.= /oo ,=,-/.r,._.

If C = qL.

Isp= i-AL£_--3+_-_,
32. m

Let us consider the structure of a convergent divergent nozzle flow. In

order to _xamine this_ we consider the concept of Mach number and speed of

sound.

The speed of sound in a gas is defined by.,

mF
kfD and for a perfect gas

O2=
---- _ _ This equation

for the propaga_ionspeed may be obtained from the acoust:Lc approxim tion and its

derivation is given in almost any book in fluid mechanics. Specifically

Liepman and Roshko give such a derivation.

We define the Mach number to be the local ratio of speed u to acoustic

speed a. Note that a is a function of position. If M>/ , the flow is

supersonic, and_/ implies subsonic flow. The two regimes are considerably

different in character, but this difference will not be discussed here.

The energy equation, may be written in the form-

-<,<,.,cp-r- c,:T{,+ -._2. "--

So that _7---= //+ _A//-i'J

If the flow is isentropic.

and .__: (/.v-._l,l,19_ r-_'-t

Where _ and _ correspond to the cha_ber conditions.
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Tske the logarithmic derivative of continuity equation (2.1) to obtain

If the flow is isentropic

And we note that, at the throat of a convergent divergent nozzle either d_=-O

or M=I. These two cases correspond to the situation where the M_h number

achieves a ma_imum at the throat (d_=-0) or M=I at the throat, and no constraint

is placed on _ at that point.

Note that if _ , d_and d_have the same sign, while if _i , dM

and _have opposite signs. If the flow starts from M=O, we then have two

possibilities:

i. It never becomes supersonic_ but rather stays subsonic all

the way with the maximum Mach number occurring at the throat.

2. The flow remains subsonic until the throat is reashed, and

will become supersonic after the throat. This _atter case

is the supersonic nozzle representation.

One distinguishes between the two cases on the basis of the ambient

pressure into which the gas exhausts.

Let us calculate. Suppose_-l.4 and the flow exits at Math 5. What is

the pressure at the exit section?

For this Mach number to be achieved isentropically the ambient pressure

must be as io_ as the exit pressure. If the ambient pressure is below _,

the nozzle is said to be underexpanded. If the ambient pressure is above this

va7ue it is overexpanded.

If the flow is to remain isentropic_ the area ratio can be determined

as a function of_ch number. Let A_designate the throat area. Then:
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Now consider the thrust on an engine, in a vacuum..

,_z. -_

Thrust = S___p_i_

exit area

Z_21

now
_l

/:i,o+
.)

p- n b, _'#_} -p-,
.J

(P+Ic,'J A

u=_, : _/i_D _; "-"_._l' !-4

- P(..+ ,'MJA. z.,,

With the quasi-one dimensional _nalysis, in the presence c_f' <_ _._biemt pressur'<

, the thrust is represented as

Z,z3

Whele _ _ represents the ambient base pressure which is not recovered

in the exit plane

How should we operate with a given mass flow, ,:_ndwhat are the trade

otts ?

If the burning chamber temperature is fi :ed, say To then

mass flow rate can be defined by the throat mass flow.

For a given mass flow and given To, p. #4 is fi×ed and /_Id_.i.s fi:,e<{.

For the same mass flow rate and To, two similar jets (sin;itare_ ratio) w:Juld

deliver the same thrust (same _'_s fixed} in a vacuum

However, in the presence of an ambient pressure, the i,:::_ (_A) is

proportional to are,_. This w_uld imply a high pressure small area system

] [m_t,_,ns I; tE:Js ,_ppr',t_<.h.would be ideal. There are obvious structural " 4 '_"

The
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Suppose that the throat area A_is given. Since the ambient loss is

proportional t_ area, one would expect that an optimum e_pansion ratio would

exist. In the quasi-one dimensional perfect gas framework, the problem is

quite direct. If the thrust is ewpressed as a function of exit Mach number

_ , throat are_ Am, chamber pressure _ , and ambient pressure _ , then

_Y- e m',_y zer<,, results fact that for maximum
be set e qua_] to There the

thrust _ _ _ ___ _]_-i, z _/ . Consequently, the optimum expansion ratio is that

in which the ewit plane pressure equals the ambient pressure.

In practice, the qu%si-one dimensional perfect gas analysis is optimistic

iu its prediction of thrust. Various losses occur. For example, the exit flow

will not be parallel, and thrust is lost through misdirection. The flow

exerts a shear stress on the nozzle such that thrust is lost. The gas itself

is not perfect and there will be losses due to non equilibrium phenomena.

In particular, with two phase flow, there will be losses due to thermal and

momentl_m lags

Energy Generation in Rockets

By far, the most common form for a rocket engine is the chemically driven

r_cket. These rockets are generally classed in two categories, solid and

liquid. In the solid rocket, the ±'uel and oxidizer are cast together in a nearly

solid rubberlike form. The liquid rocket system is usually Ba- propellant

system in which the fuel is stored in one tank and the oxidizer in a second tank.

The fuel and o×idizer are pumped, mixed, and injected into a combustion chamber

where they are burned. There are advantages to each system, and each has its

area of application.

The liquid engine has to date, achieved higher specific impulses, and

is easier to control in the sense that thrust levels may be varied by control

of fllel flow rates, mu_ shut eff and restart are commonly achieved.
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The solid engine has _istinct advantages in simplicity (lack i_ p!,:_g)

and general storeability, but it has disadvantages in that the thrust l_vel canmot

be easily controlled, that the thrust level is often strongly influenced by

temperature, that cut off is at least more costly md that restart is virtually

impossible.

The physical characteristics of many propellants are listed in Glass tone,

and will not be repeated here.

The primary objective is to achieve high specific impulse, or high combustion

temperatures with low molecular weight. Hydrogen fuel and either oxygen or

flourine oxidizer yields specific impulses of the order of 400 sec.

Solid propellants as yet do not deliver specific impulse at this level.

A figure of 300 sec. would likely be very good. Many of the high Isp rockets

are loaded with metal which burns. The products of combustion then include

particles of metallic oxide. Th_ presence of these particles modifies nozzle

design, so as to minimize thermal and momentum drag.

A solid propellant normally requires a given pressure level to sustain

burning. Ignition is effected by firing an igniter which sets up the proper

pressure temperature environment. The burning rate (/_/_-_ can be

correlated with pressure such that the rate is proportional to _ _ , _0.

A high pressure environment then induces more rapid burning. In order to

sustain a given thrust, the rocket grain should be designed that the exposed

area is roughly invariant with time. This, combined with heat transfer consid-

erations is the reason for the star shaped cutout in some grain designs.

Various exotic schemes have been proposed. One, using a nuclear reactor,

passes a nonreacting gas through a best exchanger, which is heated by the

nuclear reactor. A low molecular weight gas can be used and, at temperatures

equivalent to those of chemical reactions, much higher specific impulses can

induced (velocity_/_). The weight of the reactor and shielding can
be

be quite costly.
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lon engines are devices which accelerate ions electrostatically. Very high

exit speeds can be induced, but so far, only very low thrust levels have been

achieved. There is a significant problem in space charge neutralization.

O_eration of Rocket Systems

We will be concerned with the question of optimum burning of fuel in order

to achieve some objective. First, consider the problem of optimum thrusting

of a vertically climbing rocket, with no aerodynamic drag, a constant specific

impulse, and a constant gravatational field (flat earth).

Then equation(2.25) can be written in the form

The quantity IO_ _e_can be considered to be a measure of how fast a

vehicle c-_uld go if its remaining fuel were expanded instantanecusly( so

that gravity impulse would have no effect). With such a program_ _e_ _-

#

a _ t_w._uld remain constant, and the maximum achievable speed would be
t

give  C

The .>pt_mum thrust pr__gram may be shown to be that which maximizes

_ _ at every altitude since, the optimum could be exceeded by an

_mp__]sive bur_ otherwise. Obviously in this case, the optimum procedure is one

of firing as rapidly as possible. The idea would be to fire instantaneously.

One can m_>dify the pr._gram to account for aerodynamic drag by noting that,

(.here _ is a fumction of altitude)
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Then, by similar manipulation,

Again, the >ptimumprocedure minim _es the ,

i and results in a velocity program such that,

I For a constant C_, one obtains: _-I

e •

ii• must be careful to check that _ is negative. (

I been used by several authors, but, to the best oused by H. Lewey in 1943. R.HE).

I Next consider a simplified problem of a f]a
by a constant acceleration thrust. It is de.,_ro

I

!I horizontal flight with speed _ , at _ri _tltitude

time procedure for effecting this maneuver_

_'_ _(_s 6

As formulated_ this is a pr._blem in optimum

state variables and _ is a control variab]

o

I by any of a variety of methods. The minimum.

_@_is a linear function of time ( Fried.

may be u ed as a in icati_n o the prope_

I function of time for injection purposes.

i -].2-

-Z-/ #s,__
,,Z,,_ " .2,._ 0

is a speed such that the drag equals the weight of the vchic]s. Such

a program will call for an impulsive burn until the drac equa|s th_ weight,

followed by an acceleration such that the decrease in density is cJunteracted

by the increase in speed such that the drag-weight balance is preserved. One

( Note- The variable A_g _ has

been used by several authors, but_ to the best of my hncvledg -_, _t was first

Next consider a simplified problem of a flat earth where a vehicle is b._sted

It is desirod t._ place the w:hit]c i_t,,

]'// W;_._L i ,_ tl_',, sii,,_'t(st

As formulated, this is a pr._blem in optimum c_ntr_] theory. When X_ X/" _/_ _ are
#

is a control variable_ the problem is solved very simply

The minimum valve may be sho_m t,t bc one wherein

Space Technology Lectures ). This

may be used as an indication of the proper pr'sgra_,_ming of thrust angle as a

.f
the optimum procedure minimizes the Loss in _g_at e._ch stati _rl,
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PREFACE

These notes are to serve as background material for this course in

System Engineering. While the course will be mostly oriented toward System

Engineering as used at the Jet Propulsion Laboratory in accomplishing its

space flight missions, material is presented to give the student a better back-

ground and insight into the type or classes of problems that can be encountered

in the field.

The course will be basically divided into two parts. The first part

will include an introduction to system engineering and develop some of the

classic tools of system engineering, such as linear programming, game theory,

probability theory, decision theory and logic.

The second part of the course will be devoted to some of the practical

considerations of system engineering as used at the Jet Propulsion Laboratory.

This will include in particular the design of a hypothetical 1971 Mars Mission.

E. Kane Casani
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SystemEngineering

In the past two decades the field of System Engineering has grown

immensely. The initial catalyst which has given this field its start was

World War II. This is where operations research found its real beginning and

tools like linear programmingfound a practical application. The war represented

a rather large and complex operating system and was so difficult to understand that

decisions could not be made only on intuition, but required some rather

rigorous analysis. It was these types of problems which brought forth the

operations research.

One of the by-products of the war is the missile and out of that has grown

the AerosDace Industry as we know it today. This industry has been most

instrumental in the further development of system engineering. Today the term

system engineering is widely used and accepted throughout industry and there are

now several Colleges and Universities offering courses and degrees in it.

Although the term is widely used and accepted, it is often misused and

misunderstood. The terms system engineering, system analysis, operations

research and operation analysis are often confused and used interchangeably. Let

us look at these four terms and define them as we will use them throughout this

course. These may not be the same definitions used by other people, but they

are what we will use and therefore in our world they are correct. Since our

world is the only correct world these then are the only acceptable definitions.

The term system engineering is used as a catch-all but should be considered

in one of the following domains:

l) Operations Research

2) Operations Analysis

3) System Engineering

4) System Analysis
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I) Operations Research

Operations Research is the development of the mathematical tools,

such as linear programming, game theory, queueing theory, decision theory, etc.

which are used throughout the field. The development of these tools is usualiy

done on a higher level or at the research level. Their application is usually

more classical than practical.

2) Operations Analysis

Operations Analysis is conducted within many branches of the military

and large corporations such as the airlines, the oil industry, and the shipping

industry to improve the operating efficiency of the organization. Mathematical

models of an operating system are developed and analyzed. Some of the classic

tools are used.

3) System Engineering

System Engineering is the conception, design, development, and operation of

large complex systems. It deals with the design of an optimum system to perform

a specific job within a set of specific constraints, the most important are

usually performance, time, cost and manpower. It is this concept of System

Engineering which is most familiar throughout the _erospaee _dustry.

4) System Analysis

System Analysis deals with the analytical development models which describe

the performance of various elements of a system. Tradeoff studies are an important

part of this area. The development of the required software of the System is _rt

of System Analysis.

When we use the word "System" it is necessary that we have a good under-

standing of exactly what that encompasses.

A system in the sense we are using it can be envisioned as shown in Fig. i.

Here we have an operating system with a set of definite performance requirements
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IPerformance ___Actual Performance I
Requirementsl--_ Serating

System _and Reliability

Figure i

as its input and the actual performance and reliability as the output. In

many cases the actual performance differs widely from the performance requireme_s,

and the actual reliability is so low that system effectiveness makes it almost

useless. In talking of these types of systems the word _timization is o_en

used. The use of this term _bo_d is very misleading and con_sing. There are

two types of _timizing which should be kept in mind.

!) F_d performance - minimum cost

2) Fixed cost - maximum performance

Here performance includes reli_ility. In the first case we fix the

performance and then the _timum solution is one which meets the performance at

the minimum cost. In the second case we fix the cost and then the _timum

solution is one which maximizes the performance.

In referring to an _erating system it is importa_ to recognize all its

major elements, me system consists of:

i) Hardware

2) Serating Procedures

3) Personnel and Training

4) Environment

5) Support Equipment and _gistics

6) cost

System Engineering Process

Let us consider the process by which system e_ineering is actually conducted.

System engineering is as defined earlier, and includes the conception, design,

development and _eration of a system. This process consists of the following



major steps:

i) Project Definition

2) System Design

3) Preliminary Design

4) Hard Design

5) Fabrication

6) Assembly and Test

7) Operation

-4-

Project Definition

There is some work which is actually conducted before the project definition

which demonstrates the general requirement for this project and the general

feasibility of the project. The method used in this work is usually rather

unorthodox and the logic is often difficult to understand. There have been many

projects proposed and undertaken which were ostensively to fulfill some specific

military or civic need, which were actually only to fill someone's pocket or

ballot box. Be that as it may the problem we want to look at is given a set of

project requirements, how does one go about accomplishing the project. These

requirements are often stated in very general terms; "Take close up pictures of

Mars in 1964" or "Put a man on the moon before 1970". It is often the case that

the bigger the assignment the more general the requirements.

During the project definition phase the bounds and the groundrules under

which the project is going to operate are defined. These include such things as the

management tools, the overally schedule, the manpower and the budget. A set of

agreed upon project objectives must be developed. These objectives should be

clearly stated and understood by the project management and customer. This is a

most important step, since it is against these stated objectives that the project
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will be continually reviewed and finally appraised. The length of the pro_ect

definition phase is usually extremely short in comparison to the life of the

project, yet some of the most critical decisions which shape the entire project

must be made during this phase.

System Design

The System Design Phase consists of defining a system capable of fulfilling

the project objectives. This system should be defined in total with particular

emphasis on those areas in which extensive development is anticipated. A general

system level understanding of the entire system is required in which the level

of understanding is generally the same throughout all elements of the system.

This is not to imply that the detail mechanization of the subsystems are specified,

but that the functional requirements of all subsystems is described. At the end

of this phase there should not be any major areas uncovered, or any basic

feasibility questions unanswered. If there are then it is foolhearted to proceed

with the project, for when we are concerned with large complex systems they are

very serious in nature and one missing major element is catastrophic on the final

outcome. This activity is sometimes called the Conceptual Design Phase.

Preliminary Design

The Preliminary Design should always begin with a critical design review of

the system design. After this review it may be necessary to modify the system

design. During this phase the subsystems are functionally specified and their

interface characteristics are specified. This is an extremely critical phase in

the development of a system. To assure the best overall system design continual

tradeoffs between the subsystems must be performed. A proper balance of risks

must be achieved; this is best accomplished by prudent tradeoffs between the

subsystems conducted at the system level. In addition, care must be taken to

avoid strong intra-subsystem dependance. The system at this level of design
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should have as much compliance as practical.

Hard Design

During this phase the detail design of each subsystem is carried out. These

designs are developed in accordance with the functional specifications developed

in the Preliminary Design. It is important that all subsystems enter this phase

of the design at an equal level of design (i.e. good functional specifications).

For if one subsystem is poorly understood, its design may be dictated by the others

and this may present extreme difficulties in mechanization which could have been

avoided by some proper tradeoffs earlier in the Preliminary Design.

Fabrication

"_-_o p_==o.____....._+h_ actual manufacturing and inspection of the hardware. The

hardware dependent software is developed and checked out during this phase.

Assembly and Test

After fabrication the subsystems are tested at the subsystem level and then

assembled into an entire system. System tests are then conducted to demonstrate

the system's capability to meet its performance requirements. Specific tests are

conducted to disclose any anomalies at the system level.

Operation

After the system is successfully working as a unit it is then committed to

operations. Systems which have long operational lifetime and are a production

line item, such as large missile systems, must have a well established feed back

loop into the design as operational problems are disclosed.



Linear Programming

Linear Programming is a technique which has been developed since the

end of World War II. It actually got its real start during the War. It is

a technique which deals with certain types of problems. These problems are

characterized in that they are linear in nature and usually have no one

unique solution. In other words the problem can be bound by a set of linear

constraints and within this set of constraints a specific function is to be

optimized. Problems of this type also usually contain many variables.

The general linear programming problem can be reduced to the

following formulation:

To find x. ( _ O), j = i, 2, 3, ---, n.
J

Subject to the following cons_rainL

n

2 aij x : bi, i : I, 2, 3, --- m
j =i J

where m _n

such that

n

C = 2 c.x. is a minimum (or maximum)

j:l J j

and where aij , b i and cj are all given constants,

n

The equations which are of the form _ aij xn = b i are called
j =i

n

the constraint equations. The equation of the form C = 2 c.x. is

j=l J j

called the cost function or sometimes the objective function. It is the

value of this cost function which we wish to optimize.
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The expandedform of the constraint equations is:

all xI + a12 x + a x3 + xh + + xn = b12 13 a14 "-" aln

a21 xI + a22 x2 + a23 x 3 + a24 x 4 + -.. + a2n Xn = 02

a31 Xl + a32 x 2 + a33 x 3 + a34 x4 + --- + a3n Xn = b3
!

$ t t $ !

!

t ! ! ! !

t
t t t t !

!
t | ! ! !

aml xI + am2 x 2 + am3 x 3 + am4 x4 + --- amn xn = bm

and the cost function:

C. X_ + C_ X_ + C_ X 9 + C_ X + --- + C X = C

It Can be seen that if m = n there are m equation and n unknowns.

This is then a simple problem of m simultaneous linear equations,whose

solution is straight forward. Now if m> n, that is there are more equations

than unknowns, the problem is overconstrained and has no meaningful solution.

The case of interest is where m<n, that is there are more unknowns

than equations. In such a situation we can arbitrarily chose any values

for n - m of the variables. This then reduces the problem to one which can

be solved by the use of simultaneous equations. Then the trick is to chose

these n - m variables such that when the values of all the xj's are obtained.

they give a minimum (or maximum) solution to the cost function.

There are techniques for solving three types of problems, possibly

the most usually used is the Simplex Method. This method allows rigorous

solutions to large problems of this nature, while smaller problems of this

class can be solved by inspection and a few rules of thumb.
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The Assignment Problem

Consider a large corporation with branch offices throughout the

country. This corporation has four executive job openings, one in New York,

Los Angeles, Philadephia and Detroit. The corporation has been studying the

records of its junior executives and has chosen four men to fill the positions.

These men are located in branch offices scattered across the country, one in

San Francisco, Chicago, New Orleans, and Milwaukee. Now all jobs are equal

and all men are equally suited to fill any job. The problem is to determine

the minimum cost of relocating the four men. Moving any one man from his

present location to any one of the four job locations has associated with it

a fixed cost. It is therefore possible to determine the cost of the sixteen

possible moves. If we let the jobs be representee by Jj, j = l, 2, 3, 4 _nd

the men by Mi, i = l, 2, 3, 4 then the problem can be represented in the

matrix shown in figure 1. The cost numbers are shown in thousands of dollars.

Jl J2 J3 J4

M1 14 5 5 5

M2 2 12 6 7

7 8 3 9

2 4 6 i0

Figure 1

By inspection we can see that this problem is of the general form

of a linear programming problem, with an additional consideration, we can only

send one man to one job.
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Now let ci=o be the cost index such _''_

cij is the cost of sending Mi to Jj, and. let xij be the assignment

index such that

xij : i if M i is assigned to Jj and,

xij = 0 if M i is not assigned to Jj

It must also be noted that

4

2 xij = l, i = I, 2, 3, 4
j =l

4

x.. = i, j = i, 2, 3, 4
i=l 1J

_^ assigned to one jnbThese two statements impiy that une _n can _

only, that is xij can take the value one only once in each row and column.

Then the cost function has the form:

4 4

C = __ Z_ cij xij
i =i j =i

and this double summation, subject to the previous constraints, is

to be minimized. In this particular problem there are 16 unknowns, 7 dependent

variables and 9 independent variables.

This problem can be solved by inspection and use of two general

principles.

i) The Principle of Least Choice

2) The Principle of Interference.

Since the cost function is to be minimized the first obvious choice

would be to pick the smallest cost element of the matrix. In column one
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the c21 and c41 elements are both 2. As soon as one element is chosen, by

the principle of interference, all other elements of its row and column are

eliminated. If the c21 element is chosen then the remaining elements of the

second row are eliminated. This appears to be a prudent choice because of

the 12 in that row. The next smallest element of this matrix is c33 , the

3, and then c42 , the 4, and then c14 , the 5. Choosing each one of these

elements yields the solution shown in figure 2.

Jl J2 J3 J4

14 5 5 ®
® 12 6

M3 7 8 (_) 9

2 (D 6 lO

Figure 2

The value of the cost function for this solution is :

C=2+4+3+5

C = 14

and this is the minimum. To prove that this solution is actually

a minimum arrange all the cij's in ascending order.

2, 2, 3, 4, 5, 5, 5, 6, 6, 7, 7, 8, 9, lO, 12, 14

The first c. is 2 but this is not independent of the second
IJ

c.. and therefore only one can be chosen. This dependence is because they
ij

are both in the first column. The next four cij's are 2, 3, 4, 5 and their

sum is 14 the value of C. Therefore, C = 14 must be the minimum solution.

At this point a short discussion on the principal of interference

is proper. These types of problems are of a sequential decision class.
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That is for each decision which is made there are a nu_oer of other choices

(potential decisions) which are eliminated. It also Lurns out that the

first decision eliminates the most choices, and each subsequent decision

a smaller number. This is illustred in the problem. The original matrix

was a 4 x 4 matrix with 16 possible choices, when c was chosen the matrix
21

was then reduced to a 3 x 3 matrix with only 9 possible choices. The number

of available choices is reduced quadrically with Bach decision. A point to

be noted here is the importance of the early decisions.

This method of solution can be used on many such transportation

problems. As the size of the matrix increases the ease with which this

method can be used reduces. Matrices larger than lO x l0 are best solved

by more formal techniques. One such technique is by the use of an established

algarithim.

With several fundamental assumptions, which it is not within the

scope of this text to prove, we will develop a technique for solving larger

assignment matrices. First we w_l assume that if a matrix has a set (or sets)

of independent elements whose sum is a minimum, that by adding or subtracting

a constant from every element in any row (rows) or column (columns) we will

generate a new matrix whose minimum is contained in the same original set of

independent elements. A set of independent elements is one in which each

element is contained in one and only row and column of the matrix.

Secondly, we will assume that by proper manipulation of the matrix

we can develop a set of independent zeros in the matrix. Finally, this set

of independent zero elements corresponds uniquely to a minimum solution

of the original matrix.



-7-

Consider the matrix of the original problem, shownin figure 3.

M
1

M

M
3

Jl J2 J3 J4

14 5 5 5

2 12 6 7

7 8 3 9

2 4 6 i0

Figure 3

Nowsubtracting the smallest element from each column a new matrix

is developed (figure 4). This matrix contains a set of independent zeros

which do correspond to the original solution as shown in Figure 2.

J1 J2 J3 J4

M1 12 i 2 O*

M2 O* 8 3 2

M 5 4 O* 4
3

O O* 3 5

Figure 4

This serves to illustrate the general idea, but with a rather

simple matrix. Figure 5 shows another matrix in which the answer will not

fall out quite so easy.

2 6 5 9

3 4 8 8

5 1 2 3

4 3 2 7

Figure 5



-8-

First subtract from each row its smallest element (see Fig. 6).

0 4 3 7

0 1 5 5

4 0 1 2

2 1 0 7

Figure 6

This does not give zeros in all columns, so subtract from each

column its smallest element (_ee Fig. 7).

o 4 3 5

0 1 5 3

4 0 i 0

2 I 0 5

Figure 7

There now exists at least one zero in each row and column, but

only three of them are independent. Now to create another independent

zero, add 1 to the third row (see Fig. 8) and then subtract

0 4 3 5

0 i 5 3

5 1 2 i

2 i 0 5

Figure 8

from each column its smallest element (see Fig. 9).

O* 3 3 4

0 O* 5 2

5 0 2 O*

2 0 O* 4

Figure 9

This matrix now contains
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four independent zeros. These zeros now correspond to the elements of the

original matrix whose sum is a minimum. The solution then is

C=2+4 +2+3

C =ll

Let us now look at the application of the algorithim shown in

figure lO to this problem. This algorithim can be stated in the following

When these steps are followed properly the solution will beseven steps.

achieved.

1. Subtract from each row its smallest element. Subtract from

each column its smallest element. Choose a trial set of

independent zeros and star them. Go to step 2.

2. Cover each column which has a starred zero. If all columns are

covered, the solution is complete; if not, go to step 3.

3. Look for an uncovered zero. If there is none, go to step 7.

If one is found, go to step 4.

4. Prime this zero. Look for a starred zero in the same row. If

there is one, go to step 5. If there is none, go to step 6.

5. Cover the row, uncover the column of the starred zero, and go to

step 3.

6. There now exists a unique chain, starting at the primed zero,

going vertically to a starred zero, horizontally to a primed

zero, etc., and ending on a primed zero (with no starred zero

in its column). Go through this chain, changing primes to stars

and erasing stars. Now erase all primes, uncover all rows, and

go to step 2.

7. Find the smallest uncovered element in the matrix. Add this
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element to the covered rows and subtract it from the uncovered

columns (or add it to the covered columns and subtract it from

the uncovered rows) (or add it %othe twice-covered elements

and subtract it from the uncovered elements). Do not change

any stars, primes, or coverings. Go to step 3.

The original problem is shown in figure ii.

2 6 5 9

3 4 8 8

5 1 2 3

4 3 2 7

Figure Ii

Subtract from each row its smallest element (figure 12)

0 4 3 7

o 1 5 5

4 O i 2

2 i 0 7

Figure 12

Subtract from each column its smallest element (figure 13)

o 4 3 5

0 I 5 3

4 o i o

2 i 0 5

Figure 13
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Chose a trial set. oi' independent zeros an_istar them (f :. _4)

O* 4. 3 5

0 l 5 3

4 O* i 0

2 i O* 3

Figure 14

Cover each column which has a starred zero(fig. 15)

X x X

o* 4 3 5

O i 5 3

4 O* i O

2 I _*

Figure 15

Look for an uncovered zero. One exists in the fourth column.

this zero. A starred zero exists in the same row. Now cover the row and

uncover the column of the starred zero (see fig. 16).

X

X X

O* 4 3 5

o 1 5 3

4 O* i O'

2 i O* 3

Figure 16

Now all zeros are covered, step seven now requires us to find

the smallest uncovered elemen_ of the matrix.

to the covered rows (see fig. I _, and

This is i.

X X

O* 4 3 _

O i 5 3

5 i* 2 I'

2 1 O* 3

Prime

Add this element

Figure 17
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subtract it from the uncovered column (see fig. 18).

X

X X

O* 3 3 4

O O 5 2

5 O* 2 O'

2 O O* 2

Figure 18

Look for anuncovered zero.

second row. Prime this zero (fig. 19)

X

One exists in the second column,

X X

O* 3 3 4

O O' 5 2

5 O* 2 O'

2 O O* 2

Figure 19

There are no starred zeros in the second row. There now exists

a unique chain, starting at the primed zero, going vertically to a starred

zero, horizontaly to a prime zero. Go through this chain, changing primes

to stars and removing stars (see fig. 20)

O* 3 3 4

O O* 5 2

5 0 2 O*

2 0 O* 2

Figure 20

This then (fig. 20) is the solution to the problem since there are

four independent zeros. The minimum solution from the original matrix is then

C = 2 + 4 + 2 + 3

C = ii



The Transportation Problem

The transportation problem is another classic problem of linear

programming. It is similar to the assignment problem in many ways. To get an

insight into the problem let us consider the following situation.

A large bicycle manufacturer has three factories located in three

different spots across the country, and at five other locations he has his

warehouses. Now the cost of shipping one bike from any factory to any warehouse

is unequally determined. The problem we wish to concern ourselves with is the

minimum cost of shipping all the bikes from the factories to the warehouse. Where

it is assumed that each warehouse has a specific demand, the number of bikes

wanted, and each factory has a specific supply_ the number of bikes available.

To simplify the problem let us con_id_i ......_j _ ......._-_ .......m_ _hp total SUDDIY__ is

exactly equal to the total demand.

Let us assign some specific values to the problem and develop a

solution.

FI i00

F i00
2

F 120
3

W W4 W 5Wl W2 3

40 40 80 80 80

2 5 2 3 3

2 2 2 i 0

3 6 2 1 4

Here the problem is represented in a matrix form.

The a's are the amounts required; the r.'s are the amounts required;
l J

the elements are the cost of shipping from each factory to each warehouse per

unit. Then in general we have:

F. is the i th factory_
1

a i is the amount available at the ith factory,



W.

J

r .

J

Cij

X. °

ij
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is the jth warehouse,

is the amount required at the jth factory,

is the unit cost of shipping from Fi to Wj,

is the number of units shipped from Fi to Wj,

a. = r ,
I =i l j =i J

5

j =l
xij = ai, i = i, 2, 3, and

3

L
i = ]

xij = rj, j : i, 2, 3, 4, 5.

The problem is now to minimize the total cost of shipping all the

units. That is to minimize the following:

C

3 5

Z _. cij xij.
1 =i j =i

Let us first find an initial trial solution which satisfies the

constraints, and then inspect it for optimality. First find the lowest cost

coefficient, in this case it is c25 = O, then assign the maximum number of units,

in this case 80. Now in the second row there are 20 more units available. Assign

these to the lowest cost coefficients in that row, making sure to observe the

column constraint. In this case we can assign all 20 to the fourth column. Then

in this column look for the lowest cost coefficient and assign the remaining 60

of the fourth row. We proceed in this fashion through the matrix from row to

column making assignments until all units are assigned. The assignment is

as shown below:
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W W W W 4 W

rj• 1 2 3 5

40 40 80 80 80

40 40 20 0 0

0 0 0 20 80

o o 6o 6o o

F I i00

F i00
2

F 120
3

Now let us test this solution for optimality by inspecting what

would happen to this total if we reassigned one unit to a place where we now

have a zero. For example let us see what would have happended if we made an entry

at x35. If we add one to x35 , we must subtract one from x25 , add one to x24 and

_i ______ _^ CO_+_a_+ Q
finally subtract one from x34. This shift would _lu_ v_u_ ..................

and change the cost by

c35 - c25 + c24 - c34 = _ C

4 - 0 + i - i = + 4.

Thus we see that this shift will increase the cost by 4 for every

unit we ship from F 3 to W . By using this method we can check the entire5

solution. If we find a shift which produces a negative total then we would

transfer as many units as possible through that shift.

Since c12 is the highest cost coefficient let us look at shifting

some units out of there. Let us try for a positive entry at x22 then the shift

would alternately add and subtract to x22 , x24 , x34 _ x33 , x13 and xl2 or the

cost would change by

+ +

c22 - c24 c34 - c33 c13 - c12

2 - i + i - 2 + 2 - 5 = -3

This path is constrained by x24 (or x13 ) which are 20, therefore we

can transfer 20 units through this shift.
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FI

F
2

F3

This new assignment is sho_,mbelow:

L_ 5

40 40 80 SO 80

oo0 20 0 0 80

0 0 40 80 o

This procedure could be carried out for every unoccupied place,

but could become rather lengthy. The method of shadow costs allows us to

quickly inspect a solution and determine if it is the minimum or not, and if

not what transfer to make. We will define shadow costs, ui for every row and

v for every column such that u + v = c.. for each non zero x... Let us
J i j !3 zJ

look at the first transfer we considered,

c35 - e25 + c24 - c34 = _C or using

the shadow costs for all but the zero x.. we have
18

c35 - u2 - v_p + u2 + u4 - u3 - u4 : _ C

c35 - (v5 + u3) : C

Thus we see that if the shadow cost of the unoccupied cell does not

exceed the true cost in that cell then the total cost will increase by occupying

that cell. Conversely if the shadow exceeds the true cost then an improvement

can be realized.

cij _ u i + vj no shift

cij <_j u i + vj shift

In determining the values of the u.'sm and vj's we assign an arbitrary

alue to one of them (usually set uI = O) and work our way through the matrix
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determining all other values of ui and vj, remembering only to evaluate ui

and v. for the occupied cells.
J

This can be seen more clearly by looking at

the initial assignment.

4o 4o 2o 0 0

0 0 0 20 80

0 0 60 60 0

C° IWe can now write the zOs for the occupied cells, and then evaluate

the ui's and vj's by starting with uI = O.

0

0

0

2 5 2 1 0

2 5 2 x x

x x x 1 0

x x 2 1 x

With these values of u. and v. we can determine the shadow costs for
z J

the unoccupied cells.

2 5 2 l 0

x x x 1 0

2 5 2 x x

2 5 x x 0

Here we see that u2 + v2 _c22 and, therefore we should improve

the solution by transferring through that cell.

40 2o 40 o o

o 20 o o 80

o o 4o 8o o
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Again we must inspect this solution for optimality. Now writing

the cij's for the occupied cells, and evaluating the ui's and v.'js, starting

with uI = 0.

0 2 5

-3 x 2

0 x x

2 i 3

2 x x

x x 0

2 1 x

And then the shadow costs for the unoccupied cells

0

-3

0

2 5 2 i 3

x x x i 3

-1 x -i -2 x

2 5 x x 3

Now we see that all the shadow costs are less than the true costs

and therefore the solution must be a minimum.

The transportation problem, like the assignment problem can also

be solved by the use of an algorithm. The Algorithm is shown in Figure 1 and

the steps required are:

Algorithm For Transportation Problem

i. Subtract from each row its sm_llest element. Subtract from each column its

smallest element. Pick a trial set of quotas by assigning them to zeros,

subtracting appropriately from the discrepancies. Go to step 2.

2. Cover each column whose discrepancy is zero. If all columns are covered,

the solution is complete; if not, go to step 3.



J* Look for an uncovered zero.

found, go to step 4.
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If there is none, go to step 7. If one is

4. Prime this zero. Check the discrepancy of the row; if it is not zero,

go to step 6. If it is zero, go to step 5.

5. Cover the row, and for each twice-covered essential zero, star the zero and

uncover its colur_. Go to step 3.

6. There now exists a unique chain, as above. Find the smallest of the

following numbers: the discrepancy of the row of the first primed zero in

the chain; the discrepancy of the column of the last primed zero in the chain;

the quota of each starred zero in the chain. This number is to be subtracted

from each of these two discrepancies, and from the quota of every starred

zero in the chain, and to be added to the quota of every primed zero in

the chain. Now erase all primes and stars, uncover all rows, and go to

step 2.

7. Find the smallest uncovered element in the matrix. Add this element to the

covered rows and subtract it from the uncovered columns (or add it to the

covered columns and subtract it from the uncovered rows) (or add it to the

twice-covered elements and subtract it from the uncovered elements.) Do

not change any stars, primes, or coverings. Go to step 3.

Note: 'Discrepancies" are amounts to be shipped which have not yet been

assigned. 'Quotas" are amounts which have already been assigned to particular

elements of the matrix (i.e., particular routes.) An essential zero is one

whose quota is greater than zero.
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It is interesting to notice that a transportation problem is

in reality a special form of the assignment problem. This implies that if in

a transportation problem ai and rj are integers all the xij's must also be

integers. To understand this observation let us define both the assignment

problem and then the transportation problem in the general case.

Assignment Problem Definition

An assignment problem is of the form where k men are to be assigned

to k jobs and the cost of assigning each man to each job is uniquely defined,

and we wish to find the minimum assignment of all men. This problem can be

represented in a matrix form as shown in Fig. i.

M
i

M
2

M
3

M.
l

M
k

Jl T j _ _ j _ _ j_2 3 j k

C . C .... Clkii 12 c13 Clj

c21 c22 c23 - _ c2j - _ C2k

c31 c32 c33 - _ c3j - _ C3k

ciI ci2 ci3 - _ cij - _ Cik

Ckl Ck2 Ck3 - _ Ckj - _ Ckk

Fig. 1

I cij is the cost of assigning Mi to J.
• I

Yij = 1 if Mi is assigned to Jj, and

Yij" = 0 if M.z is not assigned to J.j

j_= = i = 2, 3, ---kYij
l, l,

1

I

I

I

Yij is the assignment index, such that
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k

2
i=l

Yij = i, j = i, 2, 3 ---k

The cost function, C, to be minimized is

k k

Cmin: cijYij
i :l j =i

Transportation Problem Definition

A transportation problem is of the form where there are m destination

and n sourees_ each source has a. units available, and each destination has r.
l j

units required. The cost of transporting from each source to each destination

is uniquely defined_ and we wish to find the minimum cost of transporting all

units to the destinations. _iis pr_ble_ ca_ L_ _-_o_s_ntcd in a _c_atrix form as

shown in Fig. 2.

S a

i i

S2 a2

S a
3 3

S. a.
i l

S a
n n

DI D2 D3 D. DJ m

rI r2 r3 --- rj --- rm

C °

Cll c12 c13 1j Clm

c21 c22 c23 c2j C2m

c31 c32 c33 c3j C3m

Cil ci2 ci3 cij cim

Cnl Cn2 Cn3 Cnj Cnm

Fig. 2

D. is the jth destination

r. is the number of units required at D.
J J

Si is the ith source

a. is the number of units available at Si
l

cij is the cost of shipping one unit from S i to Dj

x.. is the number of units shipped from S. to D
iJ i j



n

If _ x = r, j = i, 2, 3 ---m
i = i ij j

and if

m

/

j =l
x.. = a._ i = ]., 2, 3 --- m_
iJ ±

n m

then _ a = > rj

l=l j :i

This last statement implies the number of units required is exactly

equal to the number available. WhiLe this may not always be true in the original

problem, any problem can be formulated in this manner bj the additional

artificial sources or destinations.

Th_ cost function, C, to be minimized is

n m

Cmin= 2 2 c x..
i = i j = i ij _J

Now with these definitions any transportatation problem may be expanded

into a large assignment problem as follows. Consider an m by n transportation

problem where

n

2
i=l

m

a = _ r. =k

i _j:l J

This transportation problem can then be expanded into a k by k matrix

which is composed of may subsets which are matrices with identical c..'s in each
Ij

element and are ai by r. large (i = i, 2, --- n; j = i, 2 --- m). This problem
J

is now similar to a standard assignment problem and its optimum solution must

!

contain values of Yij = 1 or O, where all the Yij s = 1 are independent. This

large assignment problem can then be collapsed to the original transportation

problem and the xij's of the transportation will be the sum of the Yij's of the

assignment problem for each constant cij subset of the matrix. Since the Yij's

of the assignment problem can only have values 1 or O, integer numbers, then



their sums, the x
ij
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's of the transportation problem, must also be integers.



Decision Theory

The subject of decision theory has possibly more faces and

interpretations than one can imagine. To gain someinsight into the facade

which wewill concern ourselves, i.e. the morepractical considerations, let

us consider the following situation.

You are sitting on a park bench on a nice cool Sundayafternoon

watching what ever seemsto be the thing to watch. Thenalong comesa rather

average young man, you hardly take notice of him, until he sits downnext to

you. Thenyou notice he has an ice cream cone in his hand. He offers you

the ice cream cone. You have just finished eating and without too muchthought

reply " no thank you". You just don't feel like an ice cream cone. Nowin

refusing the cone did you makea decision? No not really, you simply reacted.

Nowthe stranger reaches into his pocket with his other hand and

pulls out a small hand gun. He looks at you, places the gun in your side and

says, "I think you want my ice cream cone". What do you do? You accept the

ice cream cone rather quickly and thank him. Now, have you madea decision?

No, you had no other alternative but to accept. At least if you are a rational

person, you had no other alternate. You could have chosen to get shot but that is

hardly rational.

So there you are about to eat your ice cream cone, still not having

madeany decisions, when another mansits downalong side of you. This second

manwispers in your ear not to eat the ice cream cone. He claims that he knows

the first manwith the gun in your side and that this mangoes around the park

on Sunday afternoon passing out poisoned ice cream cones. He claims that this

man is a little crazy.

Nowyou have a problem and now you have to makea decision. You also

start asking yourself somequestions which you must answer before you can make
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any decision. Is the ice cream cone really poisoned? _Wnatkind of poison?

_o is really crazy, the first man, the second man, both menor neither? Does

the first manhave a real gun? Is it really loaded? Will he really shoot?

Nowwhat are your choices. You can eat the ice cream cone, hope nothing

happens, get up, say good-by and go to the nearest hospital to have your stomach

pumped;you could eat it and take your changes; you could refuse to eat it and

take your chances; or you could drop the ice cream cone and run for your life

and hope the man is a poor shot.

It is this type of decision making which is to be discussed. Let us

first define someof the major elements or key points of a decision, and the

comeback to this problem.

l) Problem

There must be a problem before we can talk about making a decision.

There must be several choices at hand and the proper choice is not obvious. We

must consider a decision as an irrevocable committment of resources.

2) Uncertainty

To be concerned with a decision there must be uncertainty as to

what the actual outcome will be. If the outcome is determined then no real

decision is required.

3) Probability Theory

The fact that there is uncertainty involved implies that probability

theory must play a strong part in decision theory.

4) State of Mind

While the theory of probability is underlying to entire approach

to making a decision we must use the probability as our state of mind about the

situation. The probability of an event occuring is a measureof our belief

that it will occur.
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5) Experience

The probability we associate with an event occuring is depend_nt

on our experience.

6) Value

We must assign a value to each possible outcome of a situation.

The value of an outcome must not be confused or influenced by the probability

of the outcome occuring.

7) Risk Criteria

We must determine how much risk we are willing to take before we

make the final decision. Do we want to maximize the expected value and reduce

the probability of obtaining it, or do we want to minimize the probability of

getting nothing?

8) Future

A decision must be influenced by the future. _Cnen a decision is

made its outcome is dependent on things that happen subsequent to is being made.

9) Outcome

It is most important to realize that good decisions can ha_e good

outcomes or bad outcomes and that bad decisions can have good outcomes or bad

outcome s.

It is interesting to note that Decision Theory is highly dependent

on Probability Theory_ yet Probability Theory is 350 years old while DecisiOn

Theory is only 20 years old.

Let us look at a problem in which a girl cannot decide where to

have her wedding reception; inside_ outside or on the porch. The real problem

is rain or shine. Let's look at all possible outcomes and assign some value

numbers to them.
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inside i......

/

/ porch

Value

.6 rain
........

.4 shine
4

.6 rain
3

.4 shine
6

.6 rainoutside 0

.4 shine
i0

Exp_c _ve(_ Value

3.0

4.6

1.6

1.8

4.2

2.4

0.0

4.0

4.0

We can now determine the expected value of each decision (i.e. inside,

outside, porch) whihh is the sum of the values times their probabilities.

I

Probability of rain I

Inside il 4.6

Porch iJ_ 4.2

Expected Value

.4 to .6 •5 to .5

4.5

4.5

5.0

The above table shows how a small change in the probability of rain

can change the expected value.

In addition to considering the Expected Value we must also consider

our willingness to take a risk. With a 50 - 50 chance of rain our expected

value is the highest if the party is outside, but 50% of the time we have a flop

(i.e. value 0). Whereas, if the party is inside the expected value is 4.5

and the true value is never below 4.
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Let us consider another problem in which a judge must decide

whether to free or convict a man, given some probability, p, that the man

is guilty and l-p he is innocent.

convict

free

p guilty B

l-p innocent B - C

p guilty A - D

] --p+l innocent A

A Gain to society of freeing the man

B Cost of keeping a man in jail

C Cost of convicting an innocent man

D Loss to society of freeing a guilty man

$7,000

$2,000

$100,000

$i0,000

Convict

Free

Now the Expected Value of each choice are

pB + (l-p) (B-C)

p (A-D) + (l-p) A

Therefore the judge should convict if pB + (l-p) (B-C) p (A-D) + (l-p) A

pB + B - C - pB + pc _pA - pD +A - pA

pC + pD _B + C + A

A+B+C

p _ C+D

In the case shown p must be

7_000 + 2_000 + i00_000
p _ 100,000 + I0,000

lo9
P f2 Yi5

p _ .991o



i) Orderability

2)

A<B or A>B

Continuity

If A> B>C
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Properties of Lotteries

then there is some p such that

B "_B, is the certainty equivalent

This is to say that

B=_"

A

_C

3) Substitutiability

If A = B then either can be chosen

4) Monotonicity

If A> B, then chose A

5) Decom_osibility

•75 A

_ .25 /_
B Utility Functions

Let us look at two lotteries:

•5 A

l.5

•5 B

A B

.1 _9o -- 9

.6 20--12

•3 __ 5o _15

Expected Value 38 36
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From the Expected Value only lottery A is the proper choice. It

should be noted that in lottery A, 50% of the time I get nothing, while in

lottery B 40% of the time I get 50 or better.

If I now consider the utility of these two lotteries, I must determine

my risk character. Let us assume I am a risk averter with a utility function;

iu (x)= 4/3 1- (½)

_4

+_

1.0

.9

.8

.7

.6

.5

.4

.3

.2

.i

0

o Io _o (o 8'o i00

value, X

We can now determine the utility of both lotteries and then their

value (for this risk averter).



ut ility

•3 //-8o _---_89--.267

•2 70 .... 83--_ 166

"5_ 0---- 0_- o
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Equivalent Utility .433

Equivalent Value 27

.487

34

We now see that the Equivalent Value is higher for lottery B than

1_++_r A h,1_ hn_h ar_ lower than the Expected Value• In other words for

lottery A, with an expected value of 38, I would pay 27, and for lottery B,

with an expected value of 36, I would pay 34.

Risk Indifferent

A risk indifferent person has a utility function with a one to one

relationship between utility and value

-4

.4
+_

1.0

.8

.6

.4

.2

0

0 30 60 90

Value, X

slope = 1



Astrodynamics

With the advent of the space age the field of astrodynamics has

grown rapidly. Most of the tools which are used today were essentially

developed by Newton and others out of the basic discoveries of men like

Kepler, Brahe and Copernicus. This work of Newton, later embelished by such

mathematicians as Lagrange and Euler, composes what is classically called

Celestial Meenanics_ Astrodymanics, as we shall briefly study it, is

engineering or practical application of Celestial Mechanics to the contemporary

problems of space vehicles, exclusive of conventional aerodynamics and booster

propulsion theory.

In dealing with the trajectories of an artificial sattelite or an

interplanetary spacecraft it is convenient to consider the general problem as

a set of problems each of which can be considered as a two body problem. In

the case of a trajectory from the Earth to a target planet (e.g. Mars), this

is done by first considering the Earth as the center of the coordinate system,

then the Sun, then Mars. By using this approach we can simplify what could be

an extremely difficult problem. This simplification lets us get a close answer

to the real problem and allows us to get a quick understanding of the situation.

Let us look first at the two body problem in its general form, then

at the coordinate systems of interest and finally at some specific problems.

In astrodynamics when we talk about the two body problem we are

restricting our thinking to motion of one (relatively small) body about another

(relatively large) body. The second body is usually considered as the central

force field_ and is used as the center of the coordinate system in which the

motion of the smaller body is described. For example, one can consider the

motion of the Earth about the Sun. In this "two body problem" the Sun is the

center force field, and the origin of an orthogonal coordinate system in which

the Earth's motion can be described. In this system a surprisingly accurate
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description of the Earth's motion can be developed without considering the

effects, or purturbations of the other planets on the Earth.

There exists a fundamentally important relationship which uniquely

describes the motion of a body in orbit about another body, called the vis-viva

integral. This integral is commonly seen in the following form:

C3 = V2 - 2G__MM
R

where: GM = 3.9 x 10 5 km 3 for Earth
--2
sec

R = the radius to the vehicle from the center of the Earth

V = velocity of the vehicle at a distance R

C 3 = twice the total geocentric energy per unit mass in

km2/sec 2. C 3 is also the square of the hyperbolic excess

velocity.

Another form of the vis-viva integral which is extremely useful

and simple is the following dimensionless form.

e2

(2 - i )
s = //r

All quantities are used in a dimensionless form, more will be said

about this later.

r is the distance of the vehicle from the center of the system

is the speed of the vehicle at a distance r

a is the semi-major axis of the conic of the vehicle

It can be seen by inspection of this equation that it is the sum

of the total potential and kenetic energy of the system. Specifically;
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.2

s corresponds to the kenetic energy

2___ corresponds to the potential energy

r

- %/ corresponds to the total energy and is constant.

a

The study and fundamental understanding of this vis-viva integral

is a most powerful tool. Its use in the conceptual design or system engineering

of space ventures is almost unlimited. We will concern ourselves mainly with

the use of this equation and forego its formal development.

Kepler's first law states, "The orbit of each planet is an ellipse

with the sun at a focus." Newton later expanded this law to state that in all

two body problems the motion under a central force field results in conic

sections. The conic sections and some of their important constants and forms

of the vis-viva integral are:

Circle

e =0

a = r

.2 (2 1s =_ -_)
r a

.2 1
S _ --

r

Ellipse

O>e>l

a>0

.2
s : _(2--!1

r a



Parabola

e=l

a =OO

.2

S

.2
S

Hyperbola

e_l

a_o

.2
s

.2
S

r a

(2_-1 )r-a

2+1)
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In astrodynamics and astronomy it is often useful, and more accurate,

to use dimensionless system. This is the numbers which are actually used in

the computation have no dimensions and are actually ratios to well known

parameter. If we consider the quantities of length, speed, and mass we have

the following basics to use;

Length

Geocentric

In considering systems in which the Earth is the central force field

all linear dimensions are expressed in terms of the Earth's radius. Then in

this system the distance to the surface of the Earth is;

r = i = 3957 mi
3957 mi

where we will assume the radius of the Earth is 3957 miles.

the moon is, r_ = 60.3706.

The distance to
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Heliocentric

In considering systems in which the Sun is the central force field

all linear dimensions are expressed in terms of the semi-major axis of the

Earth's orbit about the Sun. This distance is one astronomical unit ( 1 a.u.).

This is approximately 92.90 x 106 mi. In this system the distance to all the

planets is:

Mercury 0.3871

Venus 0.7233

Earth 1.0000

Mars 1.5237

Jupiter 5.2028

Uranus 19.1820

Neptune 30.0577

Pluto 39.5177

Speed

The speed is in terms of the satallite speed at a unit distance.

Geocentric

In this system the speed is the satellite speed at one Earth radius.

The actual speed is 7.905 km/sec, 26,000 ft/sec, 4.912 mi/sec ( _---5 mi/sec).

Heliocentric

In this system the speed is the satellite speed at 1 a.u., or the

speed of the Earth in its own orbit. The actual speed is 29.6 km/sec, 96,700

ft/sec, 18.6 mi/sec.

Mass

The mass is expressed in terms of the most massive body in the system

(i.e. the central body). In the vis-viva integral
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.2 (2_ . i )s = J/r

is the sum of the two masses in the system in dimensionless form, m1 = 1

and usually m _ m2, therefore
1

#L=mm +½ .v 1

Some useful Earth mass ratios are

Sun 331,950

Moon 0.012

Mercury 0.05

Venus 0.81

Earth 1.O0

Mars O.11

Jupiter 318.4

Saturn 95.3

Uranus 14.5

Neptune 17.2

Let us use these concepts and determine the altitude and speed of

a 24 hour synchronous satellite in a circular orbit.

First we can determine the semi-major axis by the use of Kepler's

third law.

2 3

aA

Where the sub A refers to the satellite and the sub _ refers to

the Earth. Now since a O = I we can rewrite this expression

aA = mPA 2/3
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Now P £1bis the period of a satellite at one Earth radius or
q_7

Prr_ = 2"7_" 3957
q_ 5" 60"60

P(_ = 1.38 hr. and

P_ = 24 hr then

a_ : ( 24 )2/3
1.38

a_ = 6.8 now the altitude, h, in miles is

h = (a_ - l) 3957

h = 23,000 miles

Now the speed of the satellite is

.2 (_ - 1s =_ -)
r a

but for a circular orbit r = a therefore

.2 (!s = )
r

where r = aA = 6.8

IX: i

.2 I

s =1(7. 8 )

.2
s = .147

.2

s : .384

Then the speed in miles/sec, u, is

.2
u = s " 5

u = .384 " 5

u = 1.92 miles/sec



Planetary Approach

In designing missions to the planets the approach phase has a

rather strong interaction with the entire _ission, including the launch,

transi% communication distance to Earth, and the flight time. To better

understand this we will look specifically with the general problems associated

with the planet Mars. These general concepts are applicable to all the planets

with only minor modifications. Then to makethe problems more tangeable we

will consider the specifics of the Mars approach geometry as it will be during

a 1971 opportunity.

The approach geometry at Mars is mainly determined by the magnitude

and direction of the areocentric hyperbolic excess velocity. This velocity

is the veetora] aiffe_en_e between the he!i_centric velocity of M_rs and the

heliocentric velocity of the spacecraft at the Mars encounter, neglecting the

gravitational influence of Mars on the spacecraft. This relationship is shown

in Figure i.

To Sun

Vm - heliocentric velocity of Mars

Vs - heliocentric velocity of the Spacecraft

Vhp - hyperbolic excess velocity.

Fig. i
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If we assume a sim_le coplaner Hohmann transfer between the Earth

and M_rs, we can obtain a quick estimate of the minimum value of Vhp. Using

the geometry shown in Figure 2.

__ars Orbit

Earth Orbi__ 1 _ _I

Spacecraft Orbit

therefore

Fig_ 2

First computing the velocity ofthe spacecraft vs we have

•2 2 i

s -_(--'--r a )

a = ½(1+ 1._)

a = 1.25 '

r : 1.5

@2 O
(_-)

s : 1 1.5 1.2----5

Now the heliocentric velocity of the Earth is al_proxlmAtely 3Qkm/sec,

vs = 30x .73

vs = 21.90 km/sec
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and the heliocentric velocity of Mars is

.2 (2_ L_ )
S ---- _ r a

r = a = 1.5 then

.2 (__l)S = 1

1.5

s = .815 and then

v = 3o x .815
m

vm = 24.45 km/sec

Now since we assumed a Hohmann transfer

Vhp = vm - v s

Vhp = 24.45 - 21.90

Vhp = 2.55 km/sec

It must be noted that this value is a minimum, assuming the orbits are

circular; the transfer is co-planer and Hohmann. The actual minimum is 2.82

km/sec for 1971; 2.40 km/sec for 1973. By inspection of the vis-viva integral

it can be seen that the spacecraft velocity at Mars will always be less than

the planet's velocity, since the value of r is identical and the semi-major

axis of the transfer will always be less than the semi-major axis of Mars,

for transfers that are reasonably close to optimum.

Two basic types of transfer trajectories must be considered, Type I

and Type II. Type I trajectories have heliocentric transfer angles less than

180 °, where the heliocentric transfer angle is measured from the position of

the Earth at launch to the position of Mars at encounter. The Type I

trajectories generally approach Mars from the lighted side, see fig. 3.
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To Sun

_0° / /

/ /

, 70°

i
f

Type I Approach Direction

To Earth

/

Range in

Approach Direction

Fig. 3

Type II trajectories have heliocentric transfer angles greater than

180 °, and approach Mars generally from the dark side, see fig. 4.

To Sun To Earth

7oO //4

/

I

I

Range in

Approach Direction

Type II Approach Direction

Fig. 4

The effects of approaching from the lighted or dark side of the planet

can have some profound implication on such science experiments as televisi6n.

To better understand and visualize the entire geometry problem about

Mars we will define a Mars centered coordinate system. This system will be a
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right handed, three dimension, orthogonal system, see Fig. 5.

m

R

Approach Coordinate System

Fig. 5

This system is composed of three unit vectors, R, S, T such that

= S x T. T is parallel to the ecliptic, _ ls parallel to the direction of Lh_

hyperbolic approach asymptote and _ completes the system. It is important to

understand this system to make any progress in this entire approach problem.

Within this coordinate system we wo_ld like to know the location of

the Earth and the Sun. This is important since we must communicate with the

Earth and derive solar power from the Sun. We will first define an angle, ZAP,

the angle between the Mars - Sun vector at encounter and the hyperbolic excess

velocity vector. This angle is close to the Mars - spacecraft - Sun angle a

few days before encounter. It should be noticed that if ZAP is less than 90 ° ,

the approach is from the dark side; for ZAP greater than 90 ° , the approach

is from the lighted side. Another important angle ETS is also defined. ETS

is the angle measured clockwise from the T axis to the negative projection of

the Mars - Sun vector onto the R - T plane. These two angles are shown in

Figure 6.
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Project onto

R - T plane _ S

_ _//i _7/<_ --ZAP

ETS -_ '

To Sun

m

R

Fig. 6

A "_-_ " _ _.g1_. _^_ _a _ _ aoe_a for the _th,........ p_Ir ................................ Z_AE

is the angle between the Mars - Earth vector and the hyperbolic excess velocity

vector. ETE is the angle measured clockwise from the T axis to the negative

projection of the Mars Earth vector onto the R - T plane. The reason for

measuring these angles (ETE and ETS) to the negative projections will become

apparent.

To determine where the spacecraft actually flys by the planet in this

coordinate system we will define a point in the R - T plane where the hyperbolic

approach asymptote passes through that plane. This point will be defined as

the aiming point_ and the R - T plane the aiming plane. The aiming point can then

be defined by the vector _ which has magnitudeIBland orientation _ to the T

axis or by the components of B_ (_ " _ and _ • _) as shown in figure 7 and 8.
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Planet Ce

Hyperbola Asymptote

Fig. 7

For clarity the aiming plane is shown in fig. 8.

Mars Capture

/_/Radius

' i

- _._

¥

l

I

Aiming Plane

Fig. 8

Now with this definition the reason for measuring ETE and ETS to the

negative projections becomes apparent. If _ = ETE then the Earth as seen by

the spacecraft will be occulted and if _ = ETS the Sun as seen by the spacecraft
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will be occulted. The time after encounter at which these occultations will

occur depend on the magnitude of B and the hyperbolic excess velocity. In the

case of an orbiter Earth occultation will occur at ETE and ETE +_ ,

similiarly for ETS.

Now with this concept of targeting, or aiming, the approach asymptote

in the R - T plane at a massless planet it becomes easy to transfer from a

heliocentric orbit to an areocentric orbit. This concept also allows the approach

phase to be treated independently from the interplanetary phase. We can now

investigate what the real near planet geometry is given the miss parameter and

the hyperbolic excess velocity, Voo .

The first parameter of interest is the radius of closest approach,

to the center of the planet, see fig. 9. It should be noted in fig. 9 that

S

/
ro

B

Miss Parameter B, Closest Approach r
0

Fig. 9

is in the plane of the paper for _ = 0 only. The relationship between r
0

is

and B
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V1 2GM 2
B = r° + ro Voo

where for Mars GM = 4.298 x 104 km3/sec2

this is shown in fig. lO for different values of Voo.

The bending angle _ as shown in fig. 9 is plotted in fig. ii,

again verses miss parameter, for different values of v
OO"

entry angle, Be , and range angle, ( , are two importantThe

parameters in considering the atmospheric entry problems. These parameters

are shown in fig. 12 and plotted in fig. 13.

In addition to changing the shape of the approach trajectory the

gravational effect of the planet on the spacecraft also increases the hyperbolic

excess velocity, vh. The hyperbolic excess velocity is Voo at very lmrge distances

from the planet ( R = oo) and v e at the upper atmosphere. This entry velocity

is shown in fig. 14. The hyperbolic excess velocity is related to Voo as

shown below

2 2

vh = Voo + 2 GM
R
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It is possible now to consider the problems associated with

separating a capsule from a spacecraft in the vicinity of the planet. One

could consider a mission in which a small entry capsule was carried by a

spacecraft to Mars then separated from the spacecraft and placed on an impact

trajectory to the planet. The spacecraft could then serve as a relay station

between the capsule and the Earth, or the capsule could transmit the information

directly back to Earth. In either or both cases it maybe desirable for the

spacecraft to perform someexperiments, such as te]_evision, when it flys by the

planet. Thus we see that there exists somerather important geometrical

relations between the planet, the spacecraft, the capsule anl the Earth.

Fizst let 'as look _t the magnitude and direction of the maneuver

required to place the capsule on an impact trajec .... ._or_ If the spacecraft is

targeted at someaiming point in the R - T plane with a value B and it iss

desirable to have the capsule targeted to an aiming point in the R - T plane

with a value Bc then there exists a deflection distance, D as shownin fig. 15

/

Mars Capture Radius

_T

R

Spacecraft - Capsule Aim Diagram

Fig. 15
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From figure 15 it can be seen that D = Bc - Bs" The spacecraft

- and D form a plane. This plane is perpendicular to theapproach asymptote Ss

R - T plane and shall be called the maneuverplane. Nowusing the concept

of this maneuver plane it is possible to determine the magnitude and direction

of the required capsule deflection maneuver. Another important parameter is

the difference in arrival time at the planet between the capsule and the

spacecraft. For example if the capsule is transmitting to the spacecraft then

it is important for the capsule to arrive at the planet before the spacecraft.

This difference in arrival time, _T , places some important considerations on
a

the mission design as will be seen later.

"_- _-^ _^_ +_o __t _n_ounter at which the maneuver is

made is Tf. With these parameters a good approximation to the actual geometry

can be made assuming the motions to be rectilinear. This is shown in Fig. 16,

where the plane of the paper corresponds to the maneuver plane. The communication

range at encounter, X, is given by

X =_D 2 + (voo A Ta )2

where Voo _T is the distance the spacecraft moves after the capsule impacts.a

These three parameters, X, D and Vco,_ Ta, uniquely determine the desired

encounter geometry. The velocity increment,_v, applied to the capsule has two

vI = A v cos and

v2 = _v sin such that

v I Tf = voo_T a and

v 2 Tf = D and since

components

then
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D

tanG(= voo _T a therefore

_v Tf =X

X

_V = W_f •

or

Thus the required velocity increment is seen to vary inversely with

the separation time and directly with the communication distance, X, at encounter,

and the application angle, _, is given by

_= tan "l ( D )

Voo_T a

In referring to figure 16 care should be taken to realize that the

actual geometry is significantly different since the vco of the capsule and

spacecraft are almost parallel and have essentially the same magnitude.

Some first order approximations to the accuracy of such a maneuver can

be made as follows. There are two main error sources to be considered, _v'

the error in the total velocity increment, and _p the error in pointing (or

direction), about two orthogonal axis. The velocity error will be assumed to

be a fixed percentage of the total magnitude and the error in pointing an

absolute value. These two errors map into an aiming point error with three

orthogonal components, two in the aiming plane and one normal to. The two

"in plane" errors have directions along S and D; the "out of plane" error is

normal to S and D. These three errors will be defined as follows:

Gin - the in plane error in the D direction,

_s - the in plane error in the S direction,

_out - the out of plane error
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The value of (_ in is given by

in

i

:V( _v 0}_+{_, _ A::)_

This can be seen in figure 17 and 18 and the following derivation.

Both the pointing and velocity errors map into position errors as

shown in fig. 17 and 18. From similar triangles it can be seen that

(_v X = (_i

X D
or

(_l = (/v D and

_px d
2

X

v_AT_

_ : _ v_A_

or

Now the total error in the D direction is the RSS of these two or

din =VCd D)2 + ( (5 v_ AT) 2
v p

g

Similarly the inplane error in the S direction is

(_s: ( _p D)2÷ ( _v v_ A Ta)2

OpX d
= __B

X D

I
or

and
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/ l

Pointing Error Effects

Fig. 17

Velocity Error Effects

Fig. 18
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_x O"
= ;4

X v(m a Ta

_4 = _ v_A_v a

2 2_s= 3 +_4

or

and then

or

And finally the component out of the plane is simply

(_out = (_p X

The in plane error in the S direction is important in determining

the error in arrival time, (_t' where

_t = (_s

voo

It should be noted that these errors are only the relative errors

between the spacecraft and the capsule. In addition to these there are orbit

determination errors which account for the uncertainty of where the fly by trajectory

is with respect to the actual position of the planet. This error must be add

(RSS) to these errors. The (_in and(_out then map in the R - T plane as shown

in fig. 19.

out I ---_
(_in

R

In Plane & Out of Plane Excitation Errors

Fig..19
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Figures 20 through 26 are basic design charts for the 1971 Type I

trajectories. The closed containers are values of C3_ which can be directly

related to the pa_rload capability of any launch vehicle.
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THEREFERENCEELLIPSOID

I

I

I

I

I

The shape of the Earth is of interest from the scientific point of view

as well as from the practical point of view. Recent advancements in technology

and instrumentation have in turn created increased demands concerning the

extent and accuracy of the knowledge of the Earth's figure and its gravita-

tional field.

A precise definition of the figure of the solid Earth is a difficult

concept requiring differentiation between topography and crust; a more conven-

ient concept is to define the figure of the Earth as consisting of its sea

level. Of course, by this surface is understood the ocean surface formed only

by the gravipotential of the rotating Earth, and not perturbed by w_nds, tides,

local topography, and the like.

It must be pointed out that fundamentally there is no need for a reference

surface; however, the complexity of the Earth's physical surface raises the

question of selecting a geometrical figure which can serve as an adequate

approximation and can be suitable for geometrical and mathematical operations.

A surface of reference is primarily a matter of convenience for the three

dimensional representation of relative locations below, on, or above the

Earth's surface, and for performing mathematical computations. An adequate

surface of reference has been found to be an ellipsoid.

i. The Figure of the Earth

A brief historical review of problems related to the determination of

the Earth are given in the following article, "The Figure of the Earth," by

R. K. C. Johns which appeared in the Journal of the Royal Astronomical Society

of Canada, Vol. 53, PP. 257-263, (1959).

I-I



The conception of what the earth looks like and its position in the

universe has varied through the ages. The interest in the figure of the

earth also has been motivated by practical considerations, or in order to

travel and navigate from one place to another, the directions and the dis-

tances must be known.

The first approximate but scientific notion of the shape or figure of the

earth was a sphere and was given by Aristotle and Eratosthenes. Twenty

centuries later Newton calculated that centrifugal force causes the earth

to bulge at the equator and thus showedthe earth to be an oblate spheroid.

Nowwe are learning more about the actual shape of the earth and are hopeful

of obtaining more accurate information regarding the relative positions of

continents. It has becomeapparent that man-madesatellites provide an

important tool in the hands of geodesists.

In ancient civilizations the earth was considered to be a flat disk

surrounded by oceans and in one way or another placed in the centre of the

celestial system. For example, early Chinese mapsshowthe lands of the earth

consisting of islands, swimmingin water, surrounding one enormouscountry-

the middle Kingdomof China.

The Greek philosopher Plato was the first to have had the courage to

assert that the earth is not the centre of the universe but only one of many

planets. After him Aristotle suggested the earth is a sphere. The Greeks

were able to measure the obliquity of the earth's orbit. In the third century

B. C., Eratosthenes, the librarian of Alexandria, completed the first deter-

mination of the earth's radius in humanhistory. He chose two stations, one

in Asw2nand the other in Alexandria. At the summersolstice in Aswanthe sun

at noon time was exactly overhead shining straight in a deep well. At the same

time in Alexandria, 500 miles north, the sun's rays and the zenith were enclosing

an angle, z, a little over 7 degree of arc. ( See figure I.i )
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Assumingthat the sun's rays are parallel, the angle measuredat Alexandria

corresponds to the angle between the plumb lines which is identical with the

angle at the centre of the earth's sphere, as indicated in figure i. Eratosthenes

had exceptionally good luck. His results were nearly perfect, although everything

he did seemsto have been inaccurate. His arc was measured incorrectly; so was

his angle. Eratosthenes measuredthe distance between the two stations, calcu-

lating a radius for the earth of 3,488 nautical miles. A recent figure calculated

by the U.S. Army MapService is 3,444 nautical miles.

Fig. l.l-How Eratosthenes measuredthe earth.

Through Arab scientists Greek geodetic knowledge reached Renaissance Italy

from which scientific interest in the figure of the earth spread throughout

Europe. Later Newton established his theorem showing the earth to be an oblate

spheroid. Three determinations of the earth's figure completed under the

auspices of the French Academyof Science at the end of the eighteenth century

proved Newton's concept correct. The new era of geodesy, the science of the

figure of the earth, began. Ideas and definitions were developed and inter-

national organizations of geodesists were formed where controversial items could

be discussed, and ideas and information exchanged.

The geodetic question of the dimensions and shape of the earth has always

been of basic scientific interest. However, it also has an increased signifi-

cance for modern air traffic, for rocketry, and in other fields. Particularly
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for ballistic missiles, where high altitudes and long distances are involved, the

exact knowledge of position as well as accuracy of vertical and horizontal

directions have a decisive importance. More accurate knowledge of the earth's

surface is becoming a necessity.

The surface of the earth consists of lands and seas, and it is customary

to call the surfacr formed by meansea level the geoid. The geoid is thus

an approximation to the earth's shape and size; the real earth's surface is

irregular with Rocky Mountains above the level geoid, and Death Valley below.

Although the geoid has a rather abstract definition, nevertheless it has

physical reality. ( See figure 1.2 )

The geoid is a surface that is difficult to represent mathematically and

therefore cannot conveniently be used as a reference surface for navigation,

surveying and mapping. In its place a surface capable of mathematical repre-

sentation is adopted, with a shape which closely approximates the geoid. Such

a surface is a spheroid of reference whosegeometrical centre coincides with

the centre of gravity of the geoid and whosenorth-south axis is identical with

the earth's axis of rotation.

I

I

I

I

Tu'| I_V&¢|

-',,Pea

Fig. 1.2-The geoid.
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In the twentieth century the basic Eratosthenesian idea of arc measurement

is still followed in determining the figure of the earth. The direct measurement

of a distance is replaced by a chain of triangles as represented in figure 1.3,

or derived from a geodetic network of an area. Of course, astronomical observa-

tions are included. The arc is recalculated as though all points of the arc

were transferred to the geoid at sea level. ( See figure 1.3 )

Several different arc determinations produce various radii of the earth's

curvature, and it is through the mathematical reconciliation of the arcs

Fig. 1.3-Geodetic arc measurement between A and B.

with the corresponding radii of curvature that we have come to adopt as the

reference figure the so-called spheroid of reference. It can be expected

that the resulting spheroid will be the "best fit" only to the survey data used

to determine it, and will always be an approximation valid only in the area

of the surveys. But the spheroid of reference has great advantages over the

geoid: maps can be shown on it; angles and distances can be computed; and

the deviations of the geoid from the spheroid carl be determined with certain

accuracy.

In Table i.i the dimensions of some reference spheroids deduced from

geodetic surveys, are given.
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TABLE i. i

Dimensions of Earth's Spheroids

Determination

Bessel 1841

Clarke 1866

Hayford 1909

Krassowski 1942

Hough 1956

Krassowski (U.S.S.R.

reference spheroid)

Equatorial

Semi A_is

metres

6,377,397

6,378,206

6,378,388

6,378,295

6,378,270

6,378,245

Polar

Flattening

1:299.15

1:294.98

i: 297.0

1:298.4

i:297

i:298.3

In North American surveys, the reference figure used is that of Clarke,

computed in 1866. This spheroid of 1866 differs somewhat from others, but in

the area of North America it offers a fairly good approximation to the geoid.

As mentioned previously the spheroid of reference is only an approximation

and there exist deviations of the geoid with respect to the spheroid which can

be expressed in terms of the deflections of the geoid-vertical and in elevations

of the geoid above the spheroid. The deflection of the vertical is the amgle

enclosed between the plumb bob hanging at the station and the perpendicular to

the spheroid at this station. If astronomical data is compared with the geodetic

data, these discrepancies can be expressed in terms of latitude and longitude,

azimuth and distance. Fortunately there is a method for comparing the astronom-

ical and geodetic data in order to control the precision of surveys. The

deviation of the plumb line is caused by topography in the area surrounding the

station and the variation of density in the earth's crust.

The difference between the apparent motion of stars and the period of'

the moon's revolution is the basis for lunar raethods in geodesy. Information

about the earth is provided by calculating the position of the moon among the

reference stars of the celestial sphere. The study of the moon in eclipse

occurring as the earth's shadow passes over it also supplies data for location
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evaluation of the earth. Both of these methods suffer_ however_ because of

imprecise knowledge of the moon's profile and of the distance between the

centres of gravity of the moon and the earth. The same can be said about the

sun's eclipses. The lunar methods have many practical advantages and have been

largely applied in the past. Lately there has been a revival of interest in

lunar methods. It has been proposed to use a lunar camera to photograph the

moon against the stellar background. Then from known stars the position of

the moon in terms of local co-ordinates of the station can be computed.

The arc measurement, position determination from star observation, and

lunar methods may be considered as mainly geometric approaches to the determination

of the figure of the earth. The physical approach to the determination of the

shape of the earth is based primarily on the measurement of gravity variations

on the surface of the earth.

The gravity value measured at a station, by means of a pendulum or

another kind of a gravimeter, depends mainly on the geographic position of

the station and on attraction of local and distant masses. The comparison of

gravity data deduced from the assumption that the earth is a perfect spheroid,

and the value of gravity at sea level, enables us to gather information about

the actual shape of the earth. A great amount of gravity information has been

collected already by geologists. In addition, ingenious devices for use on

ships and in submarines make gravity observations possible on the sea, whereas

other geodetic surveys and astronomical observations are limited of course

to land areas. It is possible to detect plumb deviations from the gravity

anomalies with a precision of a fraction of a second of arc.

Besides the question of the figure and shape of the earth, its gravity

centre_ etc., there exists the geodetic problem of determining the relative

positions of continents. When we undertake a survey for map making purposes

involving the stretching of long chains of triangles across the continent,
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we rely upon measurements of distances and of directions with extremely precis_

surveying instruments. But the measurements have been made only as far as the

shoreline of the continents. There they stop.

As indicated before, a spheroid of reference is calculated to represent

closely the size and shape of the earth in the survey area. Map makers of

different countries have used surfaces of different shapes and dimensions.

The problem arises of how to connect one set of geodetic latitude an_

longitude data across the unmarked ocean to another set of geodetic values

related to different spheroids of reference and having different Datum systems-

a vital question for those concerned with aiming ballistic missiles.

What we need in this instance is a network of some kind to cross the

oceans. This would require measurements of either distances or angles. A

radar reflector or a slave transmitter placed on the moon's surface would

TABLE i. 2

Distance Altitude

km. km.

i000 20

2OOO 8O

3000 181

4000 328

5ooo 525

6000 779

7000 ii01

provide a good apex for intercontinental ties enabling the geodesist to measure

accurately the distance from various places on both coasts of the ocean to the

moon.

The advent of the artificial satellite has already opened up new possi-

bilities to the geodesist. He sees in it properties which are useful in

triangulating a connection between two geodetic surveys. The satellite_ due

to its altitude above the ground, can be observed simultaneously from two

widely separated points.
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Table 1.2 gives the altitudes required for observations of the satellite

seen at the s_me time in the horizon of two stations. The approximate data

is based on the assumption that the earth's radius is 6,370 km.

In respect to the above table it may be noted that the shortest distance

i _ I',

/

XJ// ""-.,'"i"i,'"

Fig. 1.4-1ntercontinental geodetic ties.

between South America and Africa is around 3,000 km., where i km. is equiva-

lent to O.621 mile.

Suppose then that we make simultaneous distance measurements from a

group of stations on each coastal area upon the orbiting satellite. From a

mumber of simultaneous and non co-linear observations the separate geodetic

systems of reference may be correlated. ( See figure 1.4 )

The difficulties of simultaneous observations while tracking a body

travelling at great speed are considerable. However, the artificial satellite

programme offers a gre_t opportunity in the solution of earth survey problems.

Once a synchronized observation system is arranged, satellites will provide a

continuing opportunity for observations. Correlation of the maps of separate
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continents will solve a problem that has eluded practical geography since its

beginning.

The scientific significance of satellites for geodetic research has been

recognized by the U.S. National Academyof Sciences. As a result the Geodesy

Committee of Space Science Board has been formed. In the eommittee's opinion

the following geodetic objectives could be advanced through satellite observa-

tions:

(a) Correlation of position of widely separated geodetic datums.
An accuracy of 30 metres is desired and believed possible to
obtain.

(b) An evaluation of the size and shape of the earth.

(c) The determination of the gravity field of the earth.

(d) The position of the gravitational centre of the earth.

Presently, extensive studies related to geodetic satellites are being carried

out in the United States. They are indications that a special satellite for

geodetic applications will becomea reality in the not-too-distant future.

It maybe mentioned that non-geodetic satellites have already yielded

valuable information about the flattening of the earth as being 298.24. This

figure is in exact agreement with Krassowski's flattening number ( see Table

i.i ). Recent orbital analysis of Vanguard, 1958B2 indicates that the earth

has a pear shape, with 15 metres of undulation in the geoid.

The rotational ellipsoid of reference is defined by the following para-

meters:

- orientation of the ellipsoidal axis with respect to the axis of rotation

of the Earth; this requirement is actually identical with the angle between

the ellipsoidal and terrestrial equators. This angle is usually defined in

terms of two componentangles.

- two ellipsoidal parameters, usually the semi-major axis, a, and either

the eccentricity, e, or the flattening, f.
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- position of the Earth's mass center with respect to the geometrical

center of the reference ellipsoid ( three parameters ).

Therefore, seven parameters are required to relate the rotational

ellipsoid of reference to the Earth's figure. It is quite apparent that by

abandoning the approximation that the Earth is a rotational figure ( e. g.

assuming the equator is elliptical ) and introducing additional parameters

for the reference surface, a better approximation to the real Earth can be

obtained. As is customary in physical sciences, we can either attempt to

improve the approximation by increasing the complexity of the mathematical

model; or we can define the discrepancies between the physical Earth and an

accepted but somewhatsimplified mathematical model. In geodesy, for the sake

of computational advantages, the latter approach is taken.

In geometrical geodesy, where geometrical relationships are involved,

it is sufficient to approximate the Earth's figure with a rotational ellipsoid.

However, in dynamic geodesy, where the concern is with forces and accelerations,

the elliposidal model of the Earth is not satisfactory. In this case, the

Earth is approximated with an n-th order spheroid.

In this chapter, we are concerned with the geometrical considerations of

relating points on the surface of the ellipsoid, while assuming that the relative

positions of the points on the Earth remain unchanged.

2. Meridional Elli_se

The equation of the ellipsoid of revolution is usually written in rec-

tangular coordinates as follows,

.x2+y2 + z2 = i (2.1)
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The origin of coordinates is located in the center of the ellipsoid.

An arbitrary plane intersects this ellipsoid along circles and ellipses. A

plane perpendicular to the equatorial plane and containing the minor axis of

the ellipsoid is called the meridionai plane; it intersects the ellipsoid

along the meridional ellipse.

initial meridian

J

Fig. 2.l-Ellipsoid of revolution

Denoting the rectangular coordinates of a point, P, of the meridional

ellipse by p, and z, the equation of the meridional section can be written

as that of an ellipse:

(2.2)

where
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Q Reduced Latitude

The reduced latitude._, is an angle denoted as follows,

The reduced latitude is a parameter used in the construction of an

ellipse given by its semi-major axis, a, and semi-minor axis, b. The pro-

cedure is indicated in figure 3.1.

A _

I >

!
\'I

OA = OA* = a
OB = OB* = b

Fig. 3.l-Definition of reduced latitude _

Two concentric circles have their center, in O, their respective radii

are a and b. The ellipse point P is formed by the intersection of perpendic-

ulars da and db. The rest of the construction is self-explanatory. By

inspecting figure 3.1 we find that
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It is obvious that_satisfies the relation

_,;__,_ + _s_ =I

4. Geodetic (Geographic) Latitude

The geodetic latitude,_, of a point, P, is defined as the _ngle between

the equatorisl plane _nd the normal to the ellipsoid at the point, P. Figure

4.1 illustrates a meridional section of the ellipsoid. The tangent to the

meridional ellipse, t, which passes through the point, P, encloses an angle

of 90 ° +f with the positive direction of the p-axis.

b
J

i

/

L ,

_-- _ ..............

>p

Fig. 4.l-Geodetic latitude

The differentiation of the equation of the meridional elliPSe (eq. 2.2)

with respect to the parameters p and z yields

_ (_.l)
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By expressing cot_ in terms of sines and cosines, the following

equation for the meridional ellipse in terms of geodetic latitude _ is

obtained:

p*.e%,;,*_e ,- ,.z,z%o_*q,-o

Comparing the above equation with that for the meridional ellipse in

terms of the parameters, p and z ( b2p_ + a2z 2 = a2b 2 ), the geocentric

rectangular coordinat'es of an ellipsoid point are obtained,

_o -- _ , "z = _(4 2)fo:_,¢, b%:,:¢ ' "
I

The above equation is the parametric representation of the ellipsoid

in terms of geodetic latitude,f . Remembering that

b" --='_'- _O

and introducing the d.enot.atJon

Wi: I
(4.3)

i the coordinates, p and z, can be written asf'>" 14 , z:

1-15

(4.4)



5. Relations Between the Reduced and Geodetic Latitudes

The comparison of equations (3.1) and (4.2) yields

P

or introducing the expression of the eccentricity,

the following expression is obtained:

(5.1a)

From trigonometric relations_ the following equations can be derived:

(5.1b)

I _ respectively leads to the relation

W

The differentiation of both sides of equation (5.1a) with regard to_ and

(5.2)
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In order to derive the difference between the reduced latitude and the geo_ zc

latitude we write the trigonometric relation

sin (_-_) = sin _ cos_ - cos¢ sin_

Inserting the relations (5.1b) and (5.1c), there results the expression

(5.3)

where f is the elllpsoidal flattening and is defined as

or, in terms of the eccentricity, e, it is defined by

(5.4a)

It must be noted that for the terrestrial ellepsoid of reference ¢ -

is always a positive quantity and smaller than 350 seconds of arc. In the

first approximation,

in radians. In order to obtain the difference of latitudes

(5.5)

in seconds of arc, multiply the right side of equation (5.5) by 206265.

6. Geocentric Latitude

geocentric latitude,_ , of a point, P, is defined as the angleThe

between the equatorial plane _nd the radius vector of the point, P, on the

ellipsoid. See figure 6.1.
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0

C

Normal

A

OA '=
OB=b

PC=N

Tangent

Fig. 6.l-Geocentric and geodetic latitudes

Interrelating the coordinates of a point, P, on the meridional ellipse,

(_)_ and the radius vector (r), leads to(P and Z), the geocentric latitude

the following equations:

(6.1)
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Z (6.2)

Utilizing the trigonometric identity,

tan A - tan B

tan (A - B) = i + tan A tan B

and the equation,

tan_- (l- e 2) tan

(compare equations 1.6 and 1.12), there results the expression

(6.3)

Expanding the tangent on the right side of (6.3) and taking into consideration

the fact that f - _ is a small quantity, the following relation is satis-

factory for most applications:

(6.4a)

or, equivalently,

/n.
(6.4b)

Both quantities are given in radians, in order to convert them into

seconds of arc, the r_ght sides of the above equations must be multiplied by

206265. An inspection of equations (6.4) indicates that, for f = 45 ° ,

( _ -¢ )reaches a maximum of about 700 seconds of arc.
! !
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The radius vector, r, can be computedfrom the relation

r2 = p2 + z2

Substituting for p and z from equation (4.4), the following expression is

obtained for the radius vector of a point on the ellipsoid:

7. Principal Radii of Curvature

The _rinci_al radii of curvature of the ellipsoid are located in the

meridional (N-S direction) and in the prime vertical (E-W direction) planes

of the point.

The meridional section of the ellipsoid is an ellipse. Defining the

equation of the meridional ellipse as z = F(p)

its radius of curvature at the point P is given by the formula

£' + ]':"
Z n

Since z' = -cotf and z" = csc2: it follows that

M-  Cl-e')
(7.1)

The intersection of the prime vertical plane with the ellipsoid is also

an ellipse, which is perpendicular to the meridional ellipse and t_ngential

to the latitudinal circle of the point P. The radius of curvature of the
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prime vertical ellipse at the point P is

= p sec _ = _-a- (7.2)
W

According to Euler's theorem, the radius of curvature in an arbitrary

direction is given by the relationship

H N (7.3)

where A represents the angle between the North and the arbitrary direction.

8. Mean Sperical Radius of the Earth

In many problems it is convenient to represent the Earth as a sphere.

The following mean terrestrial radii are feasible.

(a) The radius of a sphere whose surface area is equal to the area of

the reference spheroid. This radius can be obtained by comparing the area

_f the sphere with that of the ellipsoid;

written:

the following equation can be

with the result that

63
(8.1)

is the radius of the sphere in question.
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(b) The radius de_'ined as the average of two equal semi-major axis

and the semi-minQr axis of the spheroid. This radius is then defined as

2a + b

rm = 3

or, equivalently,

(8.2)

(c) The radius of a sphere whose volume is identical with that of the

reference spheroid. It can be derived by equating the volume formulas for

a circle and the spheroid:

r
V -"

with the result that

(8.3)

By inserting the values for ellipsoidal parameters into each of the radius-

defining equations, the respective spherical radii are obtained. The average

earth's radius is:

R = 6371 km.
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9. Parametric Representation of the Elli_soid in Terms of Geodetic Latitude
and Longitude

The geodetic latitude has been defined in Section 3. The geodetic

longtitude is defined as the angle between the plane of the local meridian

and the plane of the meridian of Greenwich.

The rectangular geocentric coordinates (x,y,z) of a point, P, on the

ellipsoid can be expressed in terms of geodetic latitude, longtitude:

(9.1)

where, N = CP, is the radius of the curvature in the vertical, local East-

West direction ( See tigure 1.8 ):

The system of coordinates is illustrated in figure (9.1) on the following page.
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Local Meridian
/

Earth Axis of Rotation

/

Local Zenith

C

I

I
Normal

I
I

Semi-Major Axis

Fig. 9.l-Geocentric Geodetic Coordinates
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II

THEEARTH'SEXTERNALGRAVIPOTENTIALFIELD

The gravitational force is determined by the massdistribution of the

attracting bodies. According to Newton's law of universal gravitation, the

attraction is directly proportional to the product of the massesand inversely

proportional to the square of the distance between them. The theory of the

Newtonian potential approaches the problem by defining a gravitational field

produced by the distribution of massof the bodies. Notice that, in this

definition, the geometrical shape of the body is not included; the definition

is concerned with the massdistribution interior to and on the surface of the

body.

The force, F, with which a masspoint Q(a,b,c) with mass, m, attracts

an arbitrary masspoint P(x,y,z) of mass, m*, is defined as

m m*
F = G --7_r

where G is the universal gravitational constant and r 2 = (x-a) 2 + (y-b) 2 + (z-c) 2.

The dimensions of the gravitational constant, G, are gm-lcm3sec-2. The

gravitational constant is determined by measuring the force, F, for known

masses, m and m*, and the distance, r, between them. Twosuch experiments

were those of Cavendish (1798), whomeasured the attraction of two spheres

located in the samehorizontal plane, and those of Joly (1881), who placed

one sphere above the other. The gravitational constant, as determined by

the latest experiments, is equal to 0.6685 gm-lcm3sec-2.
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i0. Properties of Potentials

The gravipotential is a function of the coordinates in the three dimen-

sional space and can be represented symbolically by V(x,y,z,). The partial

derivatives of the potential with respect to the rectangular coordinates

The force vector can beequal the vectorial components of the force vector.

written in the form

___vT + _v _v_
(i0.i)

The potential has dimensions of gm cm 2 sec _2. The dimensions for the potential

corresponding to the vector acceleration are cm2sec-2; the acceleration is

equal to force per unit mass, and the corresponding potential is equal to the

gravipotential per unit mass.

The total differential of V(×,y,z) is given by the relation

av =q-_V°IX_x"_4'_'_ '_---V'v__,.-

By denoting the cosines of the angles between the direction, _, and the

coordinate axis (direction cosines) as

dL
d_J

the derivative of the potential with respect to the direction, _, can be

written as

(10.2)
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By reason of equation (i0.i)

: oz.
r0X

and therefore the total differential of the potential in the arbitrary

direction, _, can be written as

_lV-- F ¢_('_,_ll.)oiL (lO.3)

From this equation the following properties of the potential can be deduced:

(i) The derivative of the potential in a direction is equal to the

projection of the vector force (or acceleration) on that direction

(io.4)_L

(2) The work that the force, _, does in displacing a unit mass (m*=l)

from a point, P], to another point, P2, is equal to the difference of the

potentials,

(lO.5)

(3) Inspection of equation (10.4) yields the conclusion that the

differtial of the potential can be either positive or negative. The sign of the

potential increment depends upon the direction of the displacement, dL,

relative to the vector, _. The maximum of the potential increment occurs when

cos(F,dL) = +i; the minimum occurs when cos(F,dL) =-i; and the displacement

is perpendicular to _, or equivalently, when cos(F,dL) =0, the increment

of the potential, dV, equals zero; this also occurs when V(x,y,z) is a constant

along the displacement, or V(x,y,z,) = constant.
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Surfaces on which the potential is constant are called equipotential surfacas;

these surfaces have the property that the vector force at a point is perpen-

dicular to the equipotential surface intersecting the point. For a single

valued potential the equipotential surfaces do not interject; for a con-

tinuous potential the equipotential surfaces are closed or be continued to

the boundary of the existence of the potential.

(4) The potential decreases most rapidly in the direction for which

cos(F, dL) =-i. Denoting the corresponding displacement by dh, it follows

from equation (10.3) that

ah (lO.6)

It is obvious that in general the force F on the equipotential surface varies,

hence the separation between two equipotential surfaces is not constant. The

vector force lies along the displacement dh; and equation (10.6) can be

written in the form

aV--Fa ,
(lO.6a)

Integration of this equation between two equipotential surfaces results in

the equation

_ .. jrFah

Taking advantage of the fact that the sign of dh does not change, the following

equation can be written,

;- F,,,ah
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where Fm is the average value of the force_ F, along the line of force.

ii. The Force of Gravity

Let us consider a solid body which is composed of molecules with various

densities; let us also use a rectangular coordinate system whose origin is

at the center of mass and whose axis coincide with the principal axis for the

moments of inertia. We then define the volume element at a point P'(x',y',z')

as,

dT = dx' dy' dz'

and the density as

O- 0 (x', g_,z')

with the result that an element of mass is

d_ _ 0 dx' d_ Pd_ I

By reason of the choice of coordinate systems_ the static moments for the

entire body vanish:

or, in integral form:

(ii.i)

rJrz) 0 d(' d_' d_) = o

Also_ the deviation (centrifugal) moments with respect to the chosen coordinate
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system vanish:

T

T

T

(11.2)

The principal moments of inertia can be written as

T

(11.3)

And the total mass can be written in the form

M= fO ot_td_r _t_s (11.4)
r

end the external gravity potential due to the body T can be expressed as

V(xl_,_.)_-GIea_la_rot_'
r"

T T

and the potential has the properties that it and its first derivative are

finite and continuous; this implies that the second derivatives exist.

The potential has the added property that it vanishes at infinity.

v(_) =0

Let an external point have the coordinates (x,y,z). Then the partial deri-

vatives of the potential are:
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where

I)X T fD

_j f.D
"I"

T

r 2 = (x'_x)2 + (y,_y)2 + (z,_z)2 (Zl.6)

These expressions define the three components of the gravitational force

in the direction of coordinate axis.

Let us now assume that the body rotates around the principal axis for

which the moment of inertia is the greatest (call it the z-axis). A unit

mass located at the external point P(x,y,z) will undergo a centrifugal force

FGL: C__

This force can be obtained by taking the gradiant of the following scalar

potential:

Q = ½_(x 2 + y2) (ll.7)

Then, the total force acting on the unit mass can be obtained from the scalar

sum of the two potentials,

U=V+Q

or, equivalently,

T

(ii.8)
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The corresponding T acceleration of the unit mass equals the force and is

(11.9)

The componentsof the acceleration vector are

9__ _"Ie-i_'-_]_' _'_'_ _ _x
T

and the Laplacian has the value -

ca_u ca'Zl3
C_ _ _ _ Z 2

(ii.i0)

(Ii.Ii)

In analogy to equation (lO.6a), the increase in the potential due to a dis-

placement of the unit mass by a distance dL is

and, if the displacement is along the normal to the equipotential at the

point, the increase is

du = - g dh (II.IB)

or, if an expression for the displacement is desired,

,:/b'
cJh-: -- ----

%
(11.14)
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The last equation is convenient for computing undulations_ dh_ of the

equipotential surfaces (U=constant) which correspond to changesor pertur-

bations, dU, of the potential U.

12. Spherical Harmonics Expansion of the Gravipotential

We would like to expand the potential

.#

(12.1)

in spherical harmonic functions, which are the functions that frequently

occur when functions in physics are expressed in spherical polar coordinates.

On the basis of the figure

Fi_. 12.l-Diagram of External Gravipotential

r2 is defined by the equation
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Then, the reciprocal of the radius_

r

can be written as __]
'!_

r

When R>R', the above expression can be expanded in spherical harmonics to

give

O= G I !

"r T -r (_2.2)

_. P.c_ ,1a,,,, 1_'c,%b
T

For U=constant_ equation (12.2) represents an equipotential surface called

the spheroid. The first integral, I_= _ , represents the mass of the earth.

The second term can be rewritten_ by reason of

I_,Cco-,'l,)_ t.o,_ = x_'_ _' _'__

Since the origin is at the center of mass,

1"

and thus the second term vanishes:
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Using trigonometric transformat±ons, the third integral can be rewritten to

give:

T

T T

By reason of the fact, and only by reason of the fact, that the coordinate

axes are the principal axes of the moments of inertia, all terms except the first

vanish. Using the cartesian-polar transformation equations,

J -_2.I co_@/_i,7,_/

_I s,_ _ /

and eliminating the vanishing terms, the potential takes the form
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The first term _f the equation is called the spherical term amd gives

the potential of the earth were it perfectly spherical; the second ter_tlis

related to the polar flattening; and the third is interpreted as the effect

of equatorial ellipticity. The second term is a function Of the latitude only,

Such term is called zonal term; the third is a function of both the lztltude

and longitude; such a term is calledtesseral term.

It is customary to write equation (12.3) in its transformed form,

a =

GM

Pn

Pnm

_ nm

Jn =

Jnm =

JlO=Jll:J21

= the geocentric radius, latitude, _nd longitude of the

external point

the mean equatorial radius = 6378166 meters

= the earth's gravitational parameter = 3.986075 x 1014 m3sec -2

= the Legendre polynomial of degree n

= the associated Legendre function of the first kind of degree

n and order m

: the longitude associated with Jnm

the numerical zonal coefficients

the numerical tesseral coefficients

= 0 due to the assumptions made above about the choice of

the earth's geocentric coordinates.
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Leaving these terms out in computations introduces err@rs commensurate

with the errors in our estimates of the location of the center of mass of

the earth. If this center of coordinates is not near the very center, the

harmonic expansion will diverge. This divergency causes difficulties in the

application of spherical harmonic expansion for near earth gravity field.

The following values for the coefficients were obtained by scientists of

the Applied Physics Laboratory of Johns Hopkins University by an analysis of

_atellite tracking data.

Table 12.1 J - Coefficients

*Source:

**Source:

n

4

m

0_*

2*

0"*

I*

2*

3*

0"*

I*

2*

3*

4*

Jnm

1082.2 x 10 -6

1.72

2.645

2.O1

0.477

o.165

1.75

0.679

0.193

o.o5o6

o.oo6

_ nm (degrees)

from Greenwich

-13.4

6.7

-!4.6

18.7

-142.O

23.4

0.2

34.5

C. A. Wagner, Journal of Geophysical Research_

Vol. 71, No. 6, 1966, 7. 1707.

Unpublished, Applied Physics Laboratory.
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Table 12.1 showsthat the term J20 is by far the largest. It also shows

that the zonal coefficients are larger than the tesseral coefficients of the

s_meorder. Using different observations of different satellites, various

scientists have produces values for the coefficients which not nec@ssarily agree.

Table 12.1 contains coefficients of eleven terms of the harmonic expan-

sion. It is quite apparent that eleven terms cannot provide accurate information

about the fine structure of the gravity field due to geological, crustal, and

topographical features of the earth. As it stands, it can be called a _

gravity formula representing the gravity field due to the earth's interior

mass distribution. A study was made by the author in which the earth was

represented by a set of nonconcentric, nonoverlapping spherical shells. The

only assumption made was that the centers of the spheres cluster around the

origin of the coordinate system. Numerical calculations indicate that such

a model gives results equivalent to those obtained from a spherical harmonic

expansion, but without certain mathematical drawbacks of the spherical harmonic

method (in particular, the problem of divergence of the series for near-earth

points).

Satellites have proved to be a very useful 4ool in research of the

gravipotential field; it is one of the major pay-offs of space research to date.

But like any scientific tool, the gravimetric satellite has limitations.

It would be desirable to fly a low satellite in order to investigate regional

gravity anomalies. However, errors associated with our ignorance of the

perturbing effect of air drag at low altitudes contaminates the effect of

gravity anomalies, with the result that reliable conclusions cannot be obtained.

On the other hand, at high altitudes, where the air drag becomes insignificant,

the details of the gravitational field are smoothed out since many local

features contribute to the field. Therefore, great care must be exercised in

using satellites for analysis of the near-earth gravity field, and for analysis

of near-surface mass features.
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One method of obtaining the fine structure of the gravity field would

be to use a dense network of tracking stations in the region in question;

but cost factors enter the picture. The local perturbation potential could

be also obtained by the derivation of a perturbation formula (or tables of

perturbations) for specific regions based on a mathematical analysis of the

effect of crustal and topographical layers. The author has found that using

this approach, the crustal and topographical features can be satisfactorily

approximated by representing the features as simplified geometrical figures.

The uncertainties in the gravity model may persist for some time due to

the fact that the anomalies are principally due to interior mass distributions,

and the mathematical fact that an infinite number of mass distributions can

produce the same gravity field. Nor can seismic studies offer a quick solution

because seismograms are open to multiple interpretations.

If the problem of uncertainties in the gravitational model could not be

circumvented_ it would be critical where satellites are to be used for

obtaining accurately the geodetic locations of selected ground stations.

In such studies, the satellite is observed simultaneously by three or more

ground stations using either optical or ranging methods. A procedure of

simultaneous observation has the advantage of not requiring the knowledge

of either the orbital parameters or the gravity field. Three satellite systems

may be mentioned: SECOR, ECHO, and PAGEOS.

The radio ranging method is illustrated in figure 12.2. The basic

geometrical figure in the computations is a tetrahedron. The satellite is

observed by stations, Ai, Bi, Ci, at known locations and also by the new

station R, whose position is to be determined. Three simultaneous ranges,

ai, b i, ci_ enable the determination of the geodetic coordinates of the

satellite, Si. By making three such sets of observations, SI, $2, $3 , three
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ranges, rl, r2, and r3_ and the location of the new station, R_ can be deter-

mined. It is not necessary that the three sets of observations, SI, $2_ and

$3, be madeon the samesatellite pass; nor need the samethree known stations

be used on all sets of observations. Accuracies can obviously be improved by

using more than three known ground stations for each set of observations,

and also by using more than three sets of observations.

Fig. 12.2-Multiple-station radio trackin_ of a satellite

13. Gravitational Anomalies

analytical function U = U( r,_ _), representing the potential hasThe

been given in Section 12. Due to regional mass distribut.ions, the actual

potential Wp at a point P deviates from the theoretical potential U.

The true potential W at a point P can be written as

Wp : Up ÷ Tp (13.1)

C"
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where Up and Tp are the respective theoretical and anomalousgravity potentials.

Constant potentials, W= C and U = C define respective equipotential

surfaces. The surface corresponding to the theoretical potential U = C is

called a spheroid. A specific selected spheroid is called the reference

s_heroid; in geodesy, the spheroid of reference is a theoretical sea level,

and the corresponding physical surface is defined as the geoid. It must be

pointed out that this selection is a matter of convenience; it is possible to

select a set of any other theoretical and physical equipotential surfaces

such as W = V = constant.

The potential as such cannot be measured; the potential is expressed in

terms of its gravity gradient. It is of interest to establish the relation-

ship between the theoretical (spheroidal) gravity and the corresponding physical

(true) gravity.

It is assumed that point Q on a spheroid corresponds to a point P on the

true equipotential surface. Also it is assumed that the points P and Q are

not too far apart ( See figure 13.1). The respective accelerations due to

potentials W, and U are

Introduce the subscript convention that a potential with a subscript repre-

senting a point in space is to be evaluated at that point. Thus,

uo,.: u
We form the relation

where E is the angle between the vectors of spheroidal gravity _Q. and

actual gravity gp. Angle E is therefore the local plumb deflection. Since
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the points P and Q are close, the normal gravity at the point ":_if_p; __/PI_'P J

can be represented in terms of a power series in the vicinity of the point

_. [_ I_LI _'G. i_..). Then

('13.2)

The higher terms can be neglected because the points P and Q are close.

stronomic Zenith

/r_p / Spheroidal Zenith

"_...
u

Spheroidal Surface

Physical Surface

Fig. 13.1

Denoting by H the height of the true equipotential surface above the

spheroid, and reckoning positive height in the upward zenith direction of the

physical surface, we can write

OUJ

%m,.,ip
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Inserting the above terms into (13.2) and taking ii_to consideration that

it is found that (within the accuracy of terms in H2)

(13.aa)

The potentials on the spheroidal and physical surfaces are denoted by UQ and

Wp respectively. In figure 13.1 it is assumed that

U_ _p--C

At point P, the spheroid potential, _, has the value (eq. 13.4a)

-Up c - Hgc 

where the constant C has been introduced.

(13.1) to obtain

Ue "- C.- Tp

(13.4b)

Now substiute Wp=C in equation

and therefore, comparing the last two equations, we have

Tp = H _. co=,E: .(13.5)

Equation (13.5) defines Brun's theory which is fundamental in analysis

of the gravipotential. The term _( cos E can be approximated so as to give

(Z3.6)

For small E, Tp, in equation (13.5), can be approximated with
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Equation (13.5) permits the computation of undulations of the physical

equipotential surfaces with respect to the corresponding spheroid of reference.

In figure (13.2), the significance of Tp and H are indicated.

Negative T
Positive

True Equipotential Surface

Positive T

Spheroid

Fig. 13.2

The upwards undulation corresponds to T _ O.

In the above alalysis, the deduction of Equation (13.6) was based upon

a derivation along the normal to the spheroid.

It is of interest to relate the observed gravitY , gp, at a point P to

the corresponding theoretical (spheroidal) gravity at this point, _O

referred to the relevant spheroid. The difference gp __Ip is described as

the true gravity anomaly.

Differentiating Equation (13.1) along the ge0idal plumb line MR

(figure 13ll) we obtain_
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Since

_on_

where, by definition we have
_-Dnp____ = C"_ E

For small angle E _i min. of arc

G) I,'lo,., (13'7a)

or, on first approximation,

The error of approximation in equations (13.7a) and (13.7b) at sea level

( aSsuming r=980 gal, and E=I min. of arc = 29 x 10 -5 radians) is about

0.04 mgal and hence it is, in this case, not significant.

As the next problem, we consider the relation between the gravity at

a point, P, on the physical surface, and the corresponding point Q on the

spheroid. The potential Up can be expressed as a power series of the argument

H and the potential'UQ as the initial term of the series:

Ue -" U_ ÷,'-oU=.

11-21



and equation (13.1) can be re_ritten as

LUp ¢

o_

(13.9)

Differentiating the last equation along the nadir direction _gL' we obtain

for Up = spheroidal nadir,

(13.10a)

For cos E _i,

(13.10b)

Comparing equations (13.To) and (13.10b) we obtain,

(13.11)

From equation (13.5), assuming cos E_I, the elevation difference H can be

inserted into (13.1Oh) yielding a partial differential equation,

(13.12)

To estimate the value (13.11), we assume as a first approximation

$M
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and obtain for ----- the expression

where r is the geocentric radius vector. Evaluated at sea level, _ = 980xi03

regal, r = 6.4 x 108 cm and H = 50 m, and the difference of spheroidal gravity

values can be computed from equation (13.4) to be

This computation utilized a point on the equator and assumed the uncer-

tainty of the equatorial radius as representing the undulation of the physical

sea level.

This result demonstrates that the gravity values_p and_Q cannot be

considered as equal, and shows the need for the evaluation of the physical

(geoidal) effect, as given by equation (13.ii) for the representation of the

anomalistic gravity field. The correction given by equation (13.11) is often

called the "free air correction." The estimates of the above difference

_p-_, any gravity survey requires free-air correction.shows that accurate the
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III

THE EARTH' S MAGNETIC FIELS

14. The Field of a Magnetic Dipole

Electrical charges flowing in acircular ring create a magnetic dipole

field. Thellne integral of the magnetic induction around a closed circuit

enclosing a current, I, satisfies the equation

(14.1)

where B is the magnetic induction; _ is the permeability;_ is a length

increment vector; _ is the current density per unit area; and _ is the

axial vector representing the area enclosed by the line integration. The

field is symetrical about the z axis in figure 14.1; "and, therefore, it iS a

two dimensionalproblem.

/

- --jy-7Y

/'
' l
S

S

Fig. 14.l-Magnetic Dipole
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An electrical current flowing in the line element ds creates a msgle_ic

induction field at P. Due to the geometry of the problem, the magnetic field

"7"

is directed along the vectorS@, perpendicular to the vector 7o; and the

gradient of the potential is in the direction @. @ is the coJatitude. The

total derivative of the scalar magnetic potential is _ive_ by the relation

(s4.2)

where d£ is the differential increment of field produced by the x-component

of the current in d_. The expression for the differential, dB, in the integral

can be expanded to give for the integral

(14.3)

0

2 2 a2Since r = r o + -2roa sin @ for r _> a, only the first two terms of

the series expansion need be included-in the expression for i :

I  $in e ) (14.4)

After two integrations, the magnetfc scalar potential becomes

where the magnetic moment, M, stands for

(14.6)
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Taking the gradient of the potential, the magnetic induction can be expressed

as

(14.7)

This equation approximates the well known geomagnetic field. The dipole

field of the center can be calculated and it is illustrated on Figure 14.2.

05 6 • :_ .i ::_I" 10 £a_'tk

.,; • ' e' . ';. ;.

., _ . i, ' : :: ....... i i:!:!:.i:i.:!_ radii
• .._p • . ...::.: %-

Fig. 14.2-Earth's Magnetic Field

Source: Fleagle and Businger, An Introduction to Atmospheric

Physics, Academic Press, New York and London, 1963

15. Earth's Magnetic Field

The magnetic field of the Earth can be approximated by a dipole at the

center of the earth. But a closer examination of the magnetic field discloses

significant_ departures from a dipole field; these departures are called

geomagnetic anomalies. The lines of force leave the northern hemisphere

and re-enter the Earth in the southern hemisphere. A freely balanced needle

will align itself along the line of force passing through it. The needle

will be orientated vertically at the magnetic pole, and horizontally at the

magnetic equator. As we all know, the magnetic poles and equator of the Earth
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do not coincide with the geographical ones. It should be noticed that the

north magnetic pole is of "south" polarity. The m84_neticforce, B, describes

the magnetic field at any point. It can be given in terms of three different

sets of parameters:

(a) D = declination

(b) D = declination

(c) X = N_S component

The components and their signs are indicated in figure 15.1

H = horizontal intensity

H = horizontal intensity

Y = E-W component

z = vertical intensity

I = inclination = dip

Z = vertical component

Fig. 15.l-Components of Earth's Magnetic Force
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The scalar potential of a m_gnetic dipole at the colatitude angle 9

(equal to 90° - _) is defined by equation (14.5) _s

=_ __M

where the m_gnetic moment for the earth is

The vector field of a dipole is obtained from the scalar potential by taking

the gradient:

(15.2)

It is customary to describe the geomagnetic field on the earth's surface by

expanding the magnetic scalar potential in a spherical harmonic series. The

origin of the coordinates is placed at the earth's geometric center and the

polar axils of the spherical polar coordinate system is assumed to be parall_l

to the earth's geographic axis. The expansion takes a form similar to that

for the gravitational potential:

where a is the earth's radius, r is the distance from the earth's center;

@ = 90° - _ is the geograPhic colatitude; _ is thAJongitude of the point;

Pnm(COS @) is the normalized Legendre polynomial of the nth degree and mth

order; gum and hum are gaussian coefficients determined on the basis of

physical measurements. This representation csn be used only where currents

are not present. Successful applications of the formula seem to prove
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that the external currents are small and csnnot produce more than i/i000

of the field at the earth's surface.

Since the geomagnetic field is subject to secular changes, the gaussian

coefficients must be reevaluated from time to time. The comparison of world

magnetic charts for the surface field (figs. 15.2 and 15.3) for the decade

1945 to 1955 show that significant changes in the total intensity have occurred

(H.E. Vestine, 1964)_ total intensities are given in gauss.
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The geomagnetic field is also affected by solar activity, by variations

in the solar quietAwhich depend on the time of solar day; by various distur-

bances which occur from day to day (SD) , and by lunar daily (L) variations

occuring together with solar quiet variations (Sq). All these perturbations

are depending on the time of year ll-year solar cycle and the geomagnetic

latitude.

Variations of the geomagnetic field are correlated to large scale current

systems in the ionosphere between lO0 and 150 Km. It is believed that the

currents are generated by daily heating and cooling processes caused by the sun.

These processes are responsible for transportihg ions and electrons _cross

field lines.

16. Shifts in the Magnetic Poles

Analysis of old lavas and other geological specimens indicate thnt rever-

sals of the earth's magnetic field have occurred. The study made by Columbia'.s

Lamont Feological Observatory shows that the reversal of polarity takes place

at intervals of from half a million years to a million years; the changes take

about lO,O00 years to be completed.

During the reversal process, the intensity of the magnetic field reaches

zero and then build up again with the opposite polarity. Since the magnetic

field shields the earth from cosmic rays, and thus protects life on earth, some

species of life must be killed off and others must undergo mutations during

periods of weak magnetic field. Thus, the reversals of polarity must have

had some influence on the evolution of life on this planet.

Oceanic samples indicate that the last reversal occurred approximately

0.7 million years ago; temporary reversale took place 0.9 and 1.9 millions

of years ago; two other semi-permanent changes of polarity took place 2.4
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and 3.5 millions of years ago.

At the present time the intensity of the magnetic field is decreasing; and,

if the present rate of decrease in intensity continues, the intensity will

reach zero in about another 2,000 years. In addition, a northeast shift in

the north magnetic pole has been observed in the last century. The position

of the pole was first established in 1831. At that time, it was located off

the coast of the Boothia Peninsula north of King William Island. By 1904,

it had moved northeast about 25 miles. During the next 44 years it moved about

250 miles to a point in the Barrow Strait, north of Prince of Wales Island.

From 1948 to 1962 the pole had moved about 80 miles northeast to a point near

Peddle Bay at the southern end of Bathurst Island. In the last two years

the pole has moved 20 miles north and four miles east.

Project Mohole, designed to drill into the ocean mantle, will attempt to

obtain additional records of magnetic reversals in the Pacific, Atlantic, and

Inidan oceans. The lavas and sediments will be analyzed for when the successive

magnetic reversals took place.

17. Deformation of Earth's Ma6netic Field in S_ace

The geomagnetic field would extend to infinity in the complete vacuum

of interplanetary space. For a longtime geophysicists have observed that after

the appearance of solar flares the magnetic storms occur. Based on this obser-

vation S. Chapman and V. C. A. Ferraro (1930) proposed that plasma clouds

produced by solar flares deform the geomagnetic fields, and cause magnetic

storms.

Piddington (J.G.R. 65, 93, 1960) suggested that the magnetic field be

investigated by satellites to determine whether magnetic lines are extended

on the night side and compressed on the day side of the earth. See figures

17.1 and 17.2 (from N. F. Ness, Science, vol. 151, no. 3714, p. 1042 and p. 1046).
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MAGNETOPAUSE

SOLAR
WIND

Fig. 17.l-Simplified representation of the interaction of the

rarified solar wind plasma with the geomagnetic field.

/

/
l
\
\

Boundary

/
./

/ \

/

\

SoLar wind "_

Fig. 17.2-Schematic diagram of the geomagnetic field as

distorted by the solar wind.
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Direct measurements in space indicate that solar wind velocities are in the

range of 3 to 7 x 102 kilometers per second and the densities of protons are in

the range of 3 to 70 protons per cubic centimeter.

The solar wind compresses the magnetic field into a rounded shell on the

day side to a thickness of about 40,000 miles. There is disagreement as to how

long the magnetic tail is on the night side of the earth. Mariner IV reported

the absence of electron fluxes at a distance of 3000 earth radii. Recent mag-

netic measurements by IMP-I and Luna iO have shown that the magnetic field

extends to the distance of the Moon's orbit on the night side of the earth

(see figure 17.3). Luna i0 measured the presence of electrons in the vicinity

of the Moon with intensities far greater than anticipated. It appears that the

electrons are confined there by the earth's magnetic tail, in much the same way

as the electrons and protons are trapped by the earth's magnetic field to form

the Van Allen radiation belts.

The charged particles in the vicinity of the moon induce weak electric

currents within the moon. These currents in turn generate a weak magnetic field

in the moon's vicinity.

There is some similarity between the magnetic tail and the tail of a

comet. The analogy is merely descriptive and it is up to future e_perimental

and theoretical research to prove or _isprove the analogy.

Compared to the earth's magnetic moment of 8 x 1025 c.g.s.units, the

magnetic fields of Venus and Mars, as indicated by planetary probes, are 3.4

percent and 0.03 percent respectively. Results of satellite experiments are

essential in determining the origin and history of the geomagnetic field. They

must be considered along with paleomagnetic evidence.

18. Charged Particles in the Earth's Electroma_netic Field

In general, electrons and positive ions move in a plane which is inclined

to the direction of the magnetic field. Assuming that the y-axis coincides with
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element to the covered rows and subtract it from the uncovered

columns (or add it to the covered columns and subtract it from

the uncovered rows) (or add it to the twice-covered elements

and subtract it from the uncovered elements). Do not change

any stars, primes, or coverings. Go to step 3.

The ........ _ ^- " _ ...... "or±g±_,a_p_uu_u, is In fig"are ]]

2 6 5 9

3 4 8 8

5 i 2 3

4 3 2 7

Figure ii

Subtract from each row its smallest element (figure 12)

0 4 3 7

o 1 5 5

4 0 i 2

2 i 0 7

Figure 12

Subtract from each column its smallest element (figure 13)

0 4 3 5

0 I 5 3

4 0 i O

2 i 0 5

Figure 13



the lines of magnetic field, the velocity componentin the x-y plane can be

written as

where C_ is the angle between the particle's velocity vector and the direction

of the magnetic field. The equation for the magnetic force, F, can be written

in the form
I

(18.1)

D
where e is the electric charge; is the velocity of the charge; and B

is the magnetic induction. According to this equation, positive ions are deflected

counterclockwise, while electrons are deflected clockwise, when looking toward

the north, as indicated in figure 18.1.

y (north)
/

/
/

/

//

x (east)

0

Fig. 18.l-Deflection of an electron (-) and proton (+)
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IV

RADIATIVEPROCESSESIN THEATMOSPHERE

There are various ways of describing the structure of the atmosphere:

according to chemical zeactions, ionization, composition, temperature, and

molecular escape. See figure IV. The standard nomenclature accepted by the

International Union of Geodesyand Geophysics is defined in Table IV. This

section is concerned with the composition of the atmosphere. The description

begins at the Earth's surface and progresses upwsrd to the junction of the

atmospherewith the interplanetary gas. The terminus of complete mixing of

_tmospheric constituents at approximately lO0 kilometers serves as a con-

venient division of the atmosphere into two levels. Below lO0 _ilomet_s

the prevaiiing process is the mixin_ of gases in the form of neutral molecules.

Themfxtur_ consists mainly of molecular oxygen and nitrogen in the consid-

erable, variable amounts of water vapor. The concentration of water vapor is

greatest near the surface of the Earth due to condensation.

Above lO0 kilometers the diffusive process dominates. As a result,

various gases occur in their atomic form and stratify at various levels

according to their atomic weight. At this height gases dissociate into

negative and positiveions.
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Fig. IV._-Systems of Nomenclature of Atmospheric Shells

Science: Handbook of Geophysics USAF Rev. Ed.

Mac Mil_an , 1961

Table IV

Based on Temperature

Troposphere

IUGG Description of A_mospheric S;,ells

The region nearest the surface, having a more or less uniform

decrease of temperature with altitude. The nominal rate of

temperature decrease is 6.5 ° K/km, but inversions are

common. The troposphere, the domain Of weather, is in

convective equilibrium with the sun-w_rmed surface of the

earth. The tropopause, which occurs at altitudes between

6 and 18 kilometers (higher and colder over the equator),

is the domain of high winds and highest cirrus clouds.

Stratosphere The region next above the troposphere and having a nominally

constant temperature. The stratosphere is thicker over the

poles, thinner or even nonexistent over the equator. Ma×-

imum of atmospheric ozone found near stratopause. Rare

nacreous clouds also found near stratopause. Stratopause

is at about 25 kilometers in middle latitudes. Strato-

spheric temperatures are in the order of arctic winter

temperatures.
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Mesosphere The region of the first temperature maximum. The meso-

sphere lies above the stratosphere and below the major

temperature minimum, which is found near 80 kilometers

altitude and constitutes the mesopause. A relatively

warm region between two cold regions; the region of disa-

ppearance of most meteors. The mesopause is found at

altitudes of from 70 to 85 kilometers. Mesosphere is in

radiative equilibrium between ultraviolet ozone heating

by the upper fringe of ozone region and the infrared ozone

and carbon dioxide cooling by radiation to space.

Thermosphere The region of rising temperature above the major temperature

minimum around 80 kilometers altitude. No upper altitude

limit. The domain of the aurorae. Temperature rise at

base of thermosphere attributed to too infrequent colli-

sions among molecules to maintain thermodynamic equilibrium.

The potentially enormous infrared radiative cooling by

carbon dioxide is not actually realized owing to inade-

quate collisions.

Based on Composition

Homosphere The region of substantially uniform composition, in the

sense of constant mean molecular weight, from the surface

upwards. The homopause is found at altitudes between 80

and iOO kilometers. The composition changes here primarily

because of dissociation of oxygen. Mean molecular weight

decreases accordingly. The ozonosphere, having its peak

concentration near stratopause altitude does not change

the mean molecular weight of the atmosphere significantly.

Heterosphere The region of significantly varying composition above the

homosphere and extending indefinitely outwards. The

"molecular weight" of air diminishes from 29 at about 90

kilometers to 16 at about 500 kilometers. Well above the

level of oxygen dissociation, nitrogen begins to dissociate

and diffusive separation (lighter atoms and molecules rising

to the top)sets in.

Based on Ionization

Ionosphere The region of sufficiently large electron density to affect

radio communication. However, only about one molecule in

IO00 in the F 2 region to one in i00,000,000 in the D region

is ionized. The bottom of the ionosphere, the D region,

is found at about 80 kilometers during the day. At night

the D region disappears and the bottom of the ionosphere

rises to iO0 kilometers. The top of the ionosphere is not

well defined but has often been taken as about 400 kilo-

meters. The recent extension upward to I000 km based on

satellite and rocket data is shown.
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Based on chemical Reactions, ceactions

Chemosphere The region where chemical activity (primarily photochemical)

is predominant. The chemosphere is found within the alti-

tude limits of about 20 to Ii0 kilometers.

Based on Molecul&r Escape- • _.. ,.

Exosphere The region wherein molecular escape from the earth's atmos-

phere is significant. The base of the exosphere, the critical

•level, is thought to be at an altitude above 300 kilometers,

possibly as high as iOOO kilometers. Satellite data indi-

dating higher densities at these altitu!es favor higher

exosphere levels. Lighter atoms and molecules can escape

at lower altitudes than heavier ones. The earth's magnetic

field effectively prevents the escape of charged particles,
however.

Source_ Handbook of Geophysics USAF Rev. Ed. Mac Millan, 1961

The planetary atmosphere is formed by the evaporation of gases from Earth's

crust, and held by the gravitational force of the planetary mass. This explains

the face that the density of the atmosphere and its vertical distribution depend

on the mass of a planet. Additional factors involved in the formation of planetary

atmosphere are: the chemical reaction between the component gases and the crust,

the escape gases, and the heating and photochemical processes caused by solar

radiation entering the atmosphere.

The sun is the principal source of energy causing atmospheric processes.

All other sources of energy are negligeable. Solar energy is in part reflected,

in part absorbed or transmitted by the atmosphere. A portion of the radiative

energy sbsorbed by the atmosphere is reemitted again and either escapes into

space or reaches the surface of the Earth.

Solar radiation either directly or indirectly reaches the earth. Some

energy consists of both direct and scattered solar radiation; some energy

is reemitted by the atmosphere.
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The nomenclature of the electromagnetic spectrum is given below(Fleagle
and Businger, An Introdu.cti0 _ t.oAtmospheric Physics,, Associate_: Press, New York,

1963.)
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The spectral characteristics of radiant energy depend upon its origin. Solar

radiation is predominantly short-wave radiation, shorter than 3-4 microns.

The emission and the atmosphere is concentrated in the long-wave portion of the

spectrum, longer than 2 microns.

19. Definitions of Radiation Field

The fundamental concept of the radiation field is the radiant flux

the density of radiant flux is defined as the amount o_radiant energy (E)

received from all directions per unit time (dt) and per unit area IDA).

Iv-5

(19.1)



- _!

in units of cal em -2 min -I The intensity is defined as radiant

energy per unit time coming from a specific direction and passing through a unit

area perpendicular to the direction of the incoming radiation, See Figure 19.1.

_ .orm al /

do,

Fig. 19.1-1ncoming raidation

According to this definition_ the intensity can be expressed as

(19.2)

and the total flux density can be expressed as

F -- /_7
0

In certain wave length intervals, _ and _ @ _2 , the flux density can

be written as

(19.3)
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where I_ = monochromatic intensity

and also

(19.4)
P

The intensity is expressed in cal/cm2min sterad. Flux intensitY in all

wave lengths can also be given by the equation:

I -
When the intensity of the radiation does not depend upon the direction of the

'_ incoming energy, the radiation is called isotropic radiation. According to

Figure 19.2 the solid angle d_is defined as:

I dco, fs_o r . _;00 dO d

I
I

Fig. 19.2-Geometry of solid angle
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By introducing the expression for dw_we obtain

and between taking dA=l and dt=l, the flux density

0 0

In the case of isotropic radiation, I_ = constant.

and the total flux

(19.6)

(19.7a)

(19.%)

O

The equation (19.7b) can be described in such a way that the flux of

isotropic incoming radiation from a hemisphere received by a surface is equal to

the product of _ times the intensity. The surface can be arbitrarily oriented.

20. Absorption Reflection and Emission of Radiation

R:_diant energy can be absorbed in a medium, reflected from a medium or

transmitted through a medium. Let us denote the ratios of the absorbed, reflected

and transmitted energy to the incident radiation by a _ , r_ and _ ;

the following relationship exists between these ratios.

(20.1)

IV-8



A mass element dmemits in all directions the sameamount of energy dE@

where e_

wave lengths is:

= massemission coefficient. The total emission coefficient in all

O

The narrow energy beam of intensity I_ passes through a medium of density

along the path dx. Absorption is proportional to the path length,

density of the medium and intensity of the incident radiation

(20.3)

where k_

given in gcm -I. By integrating equation (20.3) we get

X

= the absorption coefficient given in cm2g -I and density f
is

(20.4)

O

This equation is known at Beer's law. The quantity

@

is called the optical thickness.

As mentioned before, a portion of the incident radiation is reflected back,

this amount, depending upon the reflective property of the body. Diffuse re-

flection is called albedo, and it is defined as the ratio of the reflected flux

to the incident flux. It should be pointed out that reflection is also a

function of wave lengths.
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21. Laws of Emission

According to Kirchhoff's law, the ratio of the emission coefficient e_

to its absorption coefficient k_ i_ a function of temperature and wave

length.

(21.1)

If we consider a black body, k_ =i, the function I (_,_) =f_ the

intensity of black body radiation for the same wave length and temperature.

This law is valid only for thermodynamic equilibrium where the body emits the same

amount of energy as it absorbs. The atmosphere however is not in a state of

thermal equilibrium, therefore, in order to apply Kirchhoff's law an assumption

as to the local thermal equilibrium must be made.

Pianck wrote the equation for the intensity of black body radiation in the

form,

C/ -J

( cI = 2_c2h, where c = velocity of light, h = 6.62_x kO-27erg sec -1 = Pkanck's

constant; c2 = c h/_ where k = 1.38 x lo-l_erg deg -I = Boltzmann's constant)

Experimentally it was found that cI = 3.74 x 10 -5 erg/cm 2 sec and c2 = 1.439cm deg,

while _ in cm a_d T in K°.

Fi_re 21.1 illustrates the COmlm_ted intensities of black body radiations

for the temperatures 5000°K, 6000°K, and 7000°K. (p_r unit wavelengths).
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Fig. 21.i-biac_ body radiation for temperatures

5000°K, 6000°K, and 7000°K

Inspection of equation 21.2 demonstrates that the intensity increases very

rapidly with rising temperature and that its peak emission shifts towards shorter

wave lengths. The equation can also be given in the following quantized

form.

(21.3)

where h = 6.625 x 10 -27 erg sec = Planck constant, c = velocity of light, and

_ = 1.38 x iO -]_ erg deg -I = Boltzmann constant. According to equation 19.7b

the flux of radiation can be represented in terms of the intensity. Thus the

total radiation intensity of a black body for all wavelengths will be found as,

(21._)
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This relation is known as the Stefan-Boltzmann equation. Using the Stefan-

Boltzmann constantj b = 5.669 x 10"12 watt cm-2deg-4 = 0.814 x lO-14cal cm-2

min-ldeg -4 .

In order to find the wave length of maximumintensity, we differentiate Planck's

law with respect to the wave length and we equate to zero. From this relation-

ship, Wien's displacement law is obtained.

-!

where OQ = 0.288 cm dog. This equation also makes it possible to determine

the color temperature of the body corresponding to maximum emission in certain

wave lengths.

22. Solar Radiation in the Upper Atmosphere

The sun can be approximated by a black body radiating energy at a temperature

of 6000 _K. Figure 21.1 shows the spectra] energy distribution of electromag-

netic radiation computed for temperatures of 6000°K and 5700°K (solid line)

and observed (dashed l_ne). Source: F. S. Johnson, J. Meteor al_ vol. ii,

431, 19_i. _30

?

2O

15

I0

5

/ \_ Fig. 22. i
1 \

/'_',_ \ Observed solar spectrum

/ "_\ and black-body intensities

/_ \\\A\

! \\

//' ,
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Short wave solar radiation reaches the earth; the earth in turn re-emits

longer wave radiation (infrared), which is absorbed by the atmosphere, and in

particular by H20 and 02; 03, N20, and CH4 absorb infrared radiation to a lesser

extent. This absorption heats the atmosphere, which re-radiates the energy,

a part of it downward;this energy provides additional thermal energy for the

earth's surface. This process of trapping solar energy is called the "green-

house effect," a process in which infrared wave radiation prevails.

Figure 21.2 gives the absorption spectra for water vapor (H20), carbon

dioxide (C02), diatomic oxygen (02) , and ozone (03) , nitrous oxide (N20),

methane(CH4)and the atmosphere. Source: J. N. Howard, Proc. IRE, vol. 47,

1451 (1959); R. M. Goody and G. D. Robinson, J. Roy. Met. Soc. vol. 77, 153,

(1951).

WavelenEtk (_)

1.08 1.90

Detail

o! HsO
Jpectrum

2.00

¢it.

o

o

o

0
0.1 0J e.J 0.4 0_J 0.e 1 1.J t S 4 | S 8 10 20 30

wavelmet_ (_)

Fig. 22.2-Absorption spectra for H20 , CO 2 02, N20 , CH4,

and the absorption spectrum of the atmosphere

IV-13



It should be noted that the radiation in the range between 8 and 12 microns

can escape into space-- with the exception of the ozone absorption hand at 9.6

microns. This wave interval is called the atmospheric infrared "window."

The density of the atmosphere diminishes with increase in altitude and

accordinijiy there is a decrease in the total numberof air molecules, water vapor,

carbon dioxide •andaerosol. This decrease in molecules changes the trans-

missivity of the atmosphere, and as a result there is a variation in the distri-

bution of the solar spectrum at various altitudes. Figure 22.3 illustrates this

variation of spectral intensity where the air mass is 1.5 and the concentration

of precipitable water, 5.0 millimetres; the concentration of aerosol, 200

particles per cubic cm; of ozone, 0.35 cm. Source D. M. Gates, Science, vol. 151,

p. 528, 1966.

u

I >-

8

I
i
!

I
I

" Ij

'l/

.1{'

I

0
O.Z

t
l,,i
i'l
j o
I i •
, , .... £Xl'RAI"[RI_STm_. SOL.&R [I_Rr-Y

' I"OTAI. £ I_RGy

_A HE_C_T Ikm) WAT?$ cm -It col m_-i _-II

., • 0 0.074? 1.07

, % l 0.o894 k28
% 2 0,0_,1 I._8

3 0._01 1.45

fl O, iO_' I._1

'"!_ _' '£XTRAT[mICST, '_131_ _:

gO Fig. 22.3-Variation, with

altitude, of spectral inten-

_a, sity versus wavelength for

_\_ direct solar radiation per-

_%,_., pendicular to the sun's rays.

U

l,t

E

'E

"i
Ul

I

ul i._, i_1 I.I &l

WAV[ LENGTH (MICRONS)

IV-IN



The constituents of the upper atmosphere have no absorption spectra in the

infrared; they are affected by short wave radiation, both near and extreme

ultraviolet (EUV) and X rays. The ultra violet, EUV and X rays comprise only

about 1%of the total energy spectrum of the sun. Since these rays have quanta

i'of large cross sections of absorption, they are absorbed by mono-atomic

and diatomic particles which prevail in the upper atmosphere. These regions

of solar energy s_ectrum are responsible for the dissociation and ionization of

the upper atmosphere.

23. Upper Atmosphere Temperature

I Figure 23.2 shows the distribution of temperature. (R. Jastrow, Planetary

i Atmospheres, Proc. In t . S_hool of Physics, Enrico Fermi, Course XXIV edited

by B. Rossi, Academic Pre_s, New York, 1964). The temperature profile, up to

85 km is based on balloon and rocket measurement. Above 85 km, the temperature

I is obtained from rocket and satellite observations.

l
1600 ' "I I
1400 . - ' , ............. __ "

I 200

0 | | I I I_111 • I | illJll • | A |||ill I 'I i I1¢11| I & I ||||1| b

10 10' I0' 10° 10_

I altifude (kin)

_ig. 23.l-The temperatdre profile of the Earth's atmosphere
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As a result of the absorption by ozone (03) of solar ultra-violet radiation

in the wave length range 2000A - 3000A, the temperature rises. This explains

in Figure 23.1 the temperature increase from the sea level till 50 km height.

At altitudes between 50 km and 90 km, the temperature decreases to 200 ° because

of emission of infrared by carbon dioxide (C02) and diatomic oxygen (02). At

higher altitudes the temperature rises again and at 300 km reaches the level of

about 1200°k. This rapid temperature increase is caused by photodissociation

and by photoionization of oxygen and nitrogen. These processes are produced by

solar far-ultraviolet radiation.

Table 23.1 below gives a summary of the effects of solar radiation on the

upper atmosphere gases.

/ SUMMARY OF EFFE_S OF SOLAR RADIATION ON UPPER ATMOSPIIERIC GASES

Spectral region Reaction Height Remarks
(_) (kin)

0.300--0.210 08 4-/u,--* Oa 4- O* (excited) 50--60 Strong absorption by ozone. Although tim re-
(Hartley absorption , action takes place for absorbed radiation
bands) with wavelengths <1.1340 _, ozone absorbs

strongly only from 0.300 to 0.210 _.

Comparatively weak absorption. Sequence of
ozone formation.

0.1925-0.1760

(Rungo Schumann

absorption bands)
0.1751--0.1200

(Runge Schumann
continuum)

0.12157

(Lyman a)
0.10247

(Lyman 8)

0.1012-0.0910
0.0910-0.0795

0]0795--0.0755

0.0744-0.0001

0.0061-0.0585

2 X 10-1-1.5 X 10-s

(X-rays)
,,,2.5 X 10 -4

Os + hv "--*0,* (excited) --* 20 50-80
0,* + 0,-_0, + 0

0 +0, + M--*O, +M

(h + hv--* 0 4- O* (excited) 80-110

NO + Av-_ NO + + e 60-90

O, + hv -_ O,+ + e 90

O, + h, _ O, + + e 50-80

O + A, -* O + + e > 200

Ns -k h, --_ N, + + e 140-160

Os + hv _ 02 + (excited) 4- e 90-120

NI 4- Av--* NI + (excited) 4- e 200

General ionisation 90-450

General ionization 60-90

Strong absorption. Dissociation of 02.

Formation of D region?

Contribution to base of E region.

Weak absorption. Contribution to D region.
Very strong absorption. Ionization of 0 con-

tributes to F_ and Fffiregions?
Comparatively weak absorption. Contribution

to Es region?

Strong absorption. Contribution to E_ region?
Very strong absorption. Coatribution to Ft

region.
Contribution to E and F regions.

Contribution to D region?

• Based on S. K. Mitra, Compendium Meteorol., p. 245 (1951), and II. Friedman, in Physics of Ihe Upper Almo_phe,'e (J. A. Ratcliffe,

ed.), p. 133. Academic Prc_% New York, 1960. -

Table 23.1
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24. Densit X Distribution of the Heterospher P

The heterosphere is the region of the upper atmosphere between 200 km and

1500 km. M. Nicolet (Smithsonian Contributions to Astrophysics, Vol. 6, p. 175,

1963) developed a method for calculating the density of the atmosphere by using

temperature as the essential parameter. In this section his method is described.

The density, ? , is defined as a function of the height, z, density,

at sea level, and H_ = parameter of the vertical distribution of density.

p -po (-z/H,), (24.1)

Using the conditions of a perfect gas and of a hydrostatic distribution,

dn, dT dz
(24.2)

where p = the total pressure; n = total molecular concentration; T = the

absolute termprature and H = the local atmospheric height defined as

H" kT' (24-.3)
mg

where k = Boltzmann's constant; m = the mean molecular mass. The differen-

tiation of [24 .3) with respect to H, m, T and g gives the: relationships between

the respective variations.

dH dT dm dq. (24-.4-)



Introducing the gradient of atmos

#=,d,_'Idz,

9heric scale height

(24.5)

From (24.2) and (24.4)

and

1 dp=. l+fl
_ --_-

Since by the definition of the density parameter

(24.6)

(24.7)

(24.8)

the local atmospheric scale height H and the density parameter H

by

HT(i+#)H,.

The equation (24.6.) and (24.7) are written as

and

The integration of these equations and expansion in series yield
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and

z r I/II--Ho\*

+5 \H+HJ "'"

P._g,-exp ( (1-F_)z r . 1 YH--IIoN =
/

+g k_--+WJ*'"
(24.13)

For conditions where a height interval is less than one scale height, the

first approximation can be made-- neglecting terms less than O.O1

k-irHT-_.))' (24.i4)

For a constant gradient of the scale height from (24.9)

and (24.1!) can be written as

_"_-_' (24.15)

pg #,H, (24.16)

Equation (24.16) can be redefined with the same order of approximation and

after integration

(24.i7)
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It is possible to work out a variety of atmospheric models based on various

combinations of the scale-height gradients, variations of temperature and mean

molecular mass.

The computations lead to the conclusion that the atmospheric conditions

are defined by a diffusion distribution and are related to the time of conduction.

The temperature appears to be the most important factor in the atmospheric

density profile. By adjusting the temperature and its vertical gradient, one can

account for variation of density due to diurnal variations, for variations of

ultraviolet radiation and for magnetic storm effects.

Extensive studies of satellite orbit perturbations provided insight into the

mechanism of atmospheric temperature and density variations.

Five principal density variations were established. They are:

(i) Day to night variations

(2) Variations with solar activity

(3) Variations with geomagnetic activity

(4) Semi-annual variations

(5) Latitude dependent seasonal variations

Source: L. G. Jacchia, Special Report No. 184, SAO, 1965. Various efforts

were made to evolve a mathematical model, which would quantitatively correlate

the density with the parameters indicated above. Considerable progress has been

made in this direction, however, we still lack explanations for many phenomena.

It is apparent that solar EUV radiations and solar activities in genera],

exercise an overriding control over atmospheric density. These phenomena directly

affect atmospheric gases and indirectly influence the atmosphere by perturbations

of the geomagnetic field. Improvement of our knowledge about the solar-

atmospheric interrelation has been significant, however, there is still need

for a more complete understanding of the processes involved. Many questions
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need asking. In this connection the following questions formulated by

L. G. Jacchia are quoted from the SAOpublication (p.i4) mentioned above.

"...does it (solar EUV) heat through direct absorption or also through

i
|

|

I

production of ions which are then driven by the earth's magnetic field?

Why are the small variations of the earth's magnetic field accompanied

by substantial heating effects?

Is there a permanent corpuscular heat source in the ionosphere?

What causes the semiannual variation?

How much of the seasonal variations is originated in the homosphere and

how much is added to them in the thermosphere?"

Hopefully, integrated theoretical studies comprising solar activities

and EUV radiation, behavior of atmospheric gases and geomagnetic phenomena_ will

provide a better understanding of atmospheric processes. These studies will

be particularly effective if combined with experimental programs extended over

the entire eleven-year solar cycle.
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SECTIONI

Introduction to Laplace Transformation and Block Diagram Representation

I. Introduction

The dynamical systems considered in this chapter can be represented

by one or more ordinary linear differential equations with constant co-

effficients. While these equations can, in general, be solved by direct

methods, application of the operation methods of Laplace transformation

has the following advantages:

l) The differentiation and integration operations are substituted

by simple algebraic operations and consequently solution of the

differential equation is reduced to a problem in algebra. The

solution is in the operational form and tables are available to

transform these solutions to the time somain. Many of the very

important properties of the time domain solution can be directly

obtained from its operational form.

2) Boundary or initial conditions are automatically included.

3) It provides a simple block diagram representation of the system.

2. Laplace Transformation

f(t) be piecewise continuous and of exponen-

tial order.* The Laplace transform of f(t) is denoted by 0_" f(t) or

F(s) and is given by

Let a function of time

(2.1)

The variable 5 is a complex quantity of the form _ 71 _

example, the transform of the step function I-_l_ )_ C'L_tlis

LLI )- E' jl-- s

As an

(2.2)

The function f(t) is of exponential order if there exists a constant

such that _ I_'l_lI is bounded for all t larger than some finite T.



-st
The Laplace transform of f(t) = e

e = i J* = s+'¢ (2.3)

2.1 Properties of Laplace Transformation

the

The following relations between f(t) and F(s) can be established by

direct application of Equation (2.1).

a) Linearity

(2.4)

(2.5)

b) Translation in s domain

(2.6)

c) Differentiation

o-' (2.7)

" ..... _d_d_d lo'J"- all: (2.8)

d) .÷
Integration o

(2.9)

e) Final Value

f) Initial value

Limit 5-_/j ) =. ,:_,.4...j ¢" /'_(_J

(2.10)

(2.11)

- 2 -



_. Application of Laplace Transformation to Solution of Differential

Equations i Transfer Function.

Let us consider the following network

c3_ L-

t

where xi_)is the value of an input voltage source and

I of the network. The following equation can be written

I 5_"(t) =<'_''_)-I" L __" Li_)4 C--_-- _li"_)_{_de

t

C

where

y(t) is the output

(3.1)

(3.2)

From Eq. (3.2)

Substituting 3.2- 3.4 into 3.1 yields

aH _

3.5 is a differential equation relating "_ (t) and y (t). Assuming

initial conditions, i.e. t_(_).= O j --& _)/f:o-- O andzero

taking transform of both sides, we have

XI s) - L c 5

(3.3)

(3.4)

(3.s)

(3.6)
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The transfer function is defined to be the ratio of transform of the out-

put to transform of input and is denoted by G(_).

From 3.6

i

_ls)- Lc" _z._¢ES _+ I-- (3.8)

Hence

(3.9)

Suppose it is desired to find the response to _ (t) = U,(t), then

(3,10)

Which is the solution in operational form. If solution in time domain

is required, the function y(t) which yields Eq. (3.10) should be found.

This process is referred to as inverse transformation. Standard tables

are available which will facilitate the process of inverse transformation.

The representation of tln:einput output relationships by means of

Laplace transformation suggest a simple method of describing systems

through block diagram notation. As an example, a single-degree-of-

freedom stabilized platform is discussed below.

o/ l

Figure 3.1 - Single-Degree-of-Freedom-Stabilized Platform
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The purpose of this control system is to keep the orientation of

the platform fixed with respect to a reference for any angular movement

of the base represented by _-")b" The following set of differential

equations govern the dynamics of the system shown in Fig. 3.1:

l) The gyro is an integrating gyro and produces a signal proportion

to the difference between the desired platform angle Or and

the actual angle __ p

(3.11)

where K l is the constant of proportionality.

The amplifier amplifies the signal e by a factor K2

,4_9_ _¢z _ (3.12)

The motor produces a torque # proportional to r_ (it is assumed

that _ is unaffected by the motor shaft speed).

f) = t_ 3 .Z,,_ (3.13)

lThe torque through the gear train with a gain K4 causes the platform

to rotate. The platform has an inertia _ and damping B

Taking Laplace transform of equations (3.11) through (3.14) we have

(.3.15)

(3.16)

(3.17)

(3. 18)

- 5-



Now the following block diagram represents the set of equations

(3.15) through (3.18)

Figure 3.2 - Block Diagram for Stabilized Piatform

When _ = _ then E = 0 and consequently F = 0 which in turn will
r p

cause no change in _ o" The error E may be different from zero, either

by a change in command _ or through a disturbance introduced by the
r

motion of the base _.._b"
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SECTION II

Feedback Systems and Stc_bi lity

4__ Open-Luo P vs. Closed-Lvop

The function of stabilizing the platform in the exa,;ple of the

previous section can also be accomplished in the following manner.

Referring to Fig. 3.l if a given change in _ is desired then an

appropriate signal :L _ can be applied to the motor to cause the right

amount of change in _*p. The system block diagram is in this case

presented by Fig. 4.1

El _ _ , _ ..... (/ /lo,E* /_.c,_.J , dT"./o
' . F'. "4: a lf

Figure 4.1 - Open-Loop Control of 0
P

This type of control is called open-loop control, and requires

precise knowledge of the constants K3, J and B and is precise only

if the base does not rotate after the initiation of command. In practice

the parameters defining the dynamics of controlled objects either are

not known with sufficient accuracy or their value may vary due to various

conditions of the environment which are very difficult to account for.

Consequently open-loop control is very sensitive to parameter variation

and completely ineffective for eliminating any effect of disturbance

inputs, such as motion of the base. Closed-loop systems, if designed

properly, can reduce the effect of these problems to a point where the

design is acceptable.

The following relationship between the transfer function of an open-

loop system G(_) and that of a corresponding closed-loop system H(G)

with a feedback transfer function K(5) is derived.
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t_ _J - (4. I)

(4.2)

i and finally, from (4.2) and (4.3)
H_ _'- _ &_._ (4.4)

5. Stabi I ity

A system is called stable if it returns to the "rest" condition

after an initial perturbation. It is evident that this property is

required of all practical control systems. In the stabilized platform

example of Section 3, it means that, for example, in the absence of any

change in command signal and base movement, if the platform is perturbed

from its rest position, it returns to that condition automatically.

Consequently, it is important to determine the stability condition of a

system from the governing equations.

A differential equation describing a stable linear system has the

property that its characteristic equation has roots with negative real

parts. This guarantees that the h_geneous solution will have an

exponentially decaying element (_' o_)O) in each additive part,

hence, all transients will decay out with time. The characteristic

equation of a system is readily available as the denominator polynominal

of the closed-loop transfer function. The stabilized platform example

of Section 3 will be used here for illustration of stability analysis.

From block diagram of Fig. 3.2, the closed-loop transfer function

is given by

- <,.,>
_s) I-t-

s"(._s _-J3..)
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Hence .

The differential equation relating input _ r(t) to the output _p(t)

can be deduced from(5.2) directly by identifying _ as d/dr ( the

differential operator)

which has the characteristic equation given by the denominator of (5.2)

3 SZ_ B St _ = 0 (5.4)

I ' ' I _ -- / -- h_ k_ +k_ f_l Imwimn tWn roIne polyf_u,,,,_, _._j ,,_ ............. _ _ ors

Since B, K and J are positive quantities, these two roots both have

negative real parts for all values of these parameters. Notice that if

feedback was positive instead of negative (i.e. for example, when the

gear train is connected wrong) then (5.1) should be replaced by

• i - ./_-_ (5.6)

which yields the following two roots for the characteristic equations

- + (5.7)
V zl

which clearly indicates that one of the roots is always a positive number.

In the area of classical control systems, a number of graphical and

numerical techniques are available by which the stability of a linear

system can be determined.
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SECTION III

Space Vehicle Systems

6. General Description of Mathematical Models for Various Space Vehicle

Operations

The control functions of a space vehicle may be divided into three

parts a) attitude control b) guidance and c) tracking. In the following

the above operations are described in brief.

a) Attitude Control - There are various reasons for the requirement

that the orientation of a vehicle remain at a desired relationship, with

respect to some reference set of axis. To name a few, a known orientation

is needed when the vehicle is thrusted, a fixed orientation is desired

when there are astronauts on board, a controlled orientation is necessary

when an on-board camera (or any similar instrument) is to point in a

specific direction. The reference system may be a fixed set of directions

in space, which is obtained bv me_n_ of _n inerLi_i piatform or by direc-

tion of location of some stars. In case of an earth satellite, a reference

system may have one axis which at any time passes through the center of

the earth.

b) Guidance of Space Vehicles - Any space vehicle probably has a

mission to perform, and that requires the transfer of the vehicle from

one point in space to another. The requirement and conditions of any

mission in general, adds more restrictions on how the transfer is to be

accomplished and what trajectory to be followed. For example, it may be

desired to land a vehicle on moon. A specific area on the surface of the

moon may be chosen as the desired landing position. In order not to

crash land, restrictions should be put on the terminal velocities of the

vehicle. Furthermore, the value of the thrusts of the on-board engines

are limited by a known quantity.

c) Tracking - Tracking is an important function to be carried out

on board many future space vehicles. In case of rendezvous and docking

of two vehicles, the required accuracies usually exceed those obtained

by means of ground tracking of both vehicles. Future vehicles will

definitely be required to be more autonomous (self governing) than those

of the past. This appears in form of lessening necessity for reliance
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on information supplied by a ground base. Consequently, the necessary

information for various pursuit and rendezvous missions have to be

obtained on board by meansof radar, optical or passive detection.
The above three functions will be treated in more detail in the

next three sections. In the remainder of this section, somegeneral

properties of the mathematical models for the vehicle in the various

modes of operation will be discussed.

In any of the desired operations, there is a part or all of the

vehicle with dynamics which have to be controlled and there is mechanism
for inducing the necessary control. In Fig. 6.1 these are referred to as

controlled object and the controller, respectively. The information

available to the controller is the reference (or command) input or

inputs and the output variable or variables which are fed back through

the use of various sensors.

Figure 6.1 - General Block Diagram of a Control System.

For example in the case of tracking the controlled object is the antenna

system, the controller is the drive (motor) which can re-orient the

antenna and the sensor, may be a rate integrating gyroscope indicating

the deviation of the center beam of the antenna from a reference axis.

In the case of attitude control, the controlled object is identified by

a set of equations representing the dynamics of the body of the vehicle,
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including the antenna system and any other object occupying the vehicle,

with respect to a coordinate system. The controller may be a set of

small reaction jets which when fired, will exert a torque causing a body

reorientation. The sensors are a numberof position and rate gyroscopes

yielding the angular and angular rate deviations of the body with respect

to a set of reference axis. Finally, in the case of guidance, the whole

system including the antenna system and all the other instruments and

astronauts can be assumedas a point masswhich will represent the con-

trolled object. The controller is one or more propulsion mechanisms

which exert a vector valued force on the point mass ( the controlled

object). The sensors may be the tracking system on board which in turn

will supply information concerning any deviation of the vehicle position,

velocity and accelleration with respect to somedesired values.

From the above discussion, it is seen that, for the samespace

vehicle, the controlled object may involve a part or whole of the

vehicle depending on various functions to be performed.

7. Attitude Control of Space Vehicle Systems

The attitude control of a vehicle, i.e. maintaining a desired

orientation for the body of the vehicle, is basically accomplished by

two different procedures, passive and active. Passive attitude control

is usually used for unmanned vehicles where a relatively sophisticated

control of the orientation may not be necessary. The object here is to

design a system which is stable ir, the vicinity of some desired orientation

in other words, any perturbation about the desired orientation reduce

to zero in time. The main sources of perturbing torques are: gravity

gradient; atmospheric pressure; electromagnetic induction and solar

radiation. The methods of passive stabilization inc|ude: spin stabil-

ization; balancing one perturbing torque against another; energy dissi-

pation and tuned pendulum. The active attitude control is accomplished

through the use of applied torques (e.g. generated by jets mounted on

the body of the vehicle) in order to perform desired corrections in the

orientation of the vehicle. Active attitude control is necessary when

the mission calls for high accuracy and speed in response to a command input.

- 12-



Equations of Motion

Let Fig. 7.1 represent a space vehicle. The point 0 is the center

of mass, ox, oy, oz are a set of orthogonal axis fixed on the body.

Figure 7.1 - Space Vehicle

The angular velocities with respect to x, y, z axis are denoted by

w , Wy, w . The moment of inertias are referred to as I , I , I Therex z x y z

may be one swiveling engine which induces a torque T with components

Tx, Ty, Tz or a set of fixed, body mounted thrusters may produce these

component values. The Newton's law of motion gives the following rela-

tionship.

Applied torque T = Rate of change of angular momentum with (7.1)

respect to an inertial coordinate system.

With respect to the body fixed axis x, y, z the law of motion assumes

the well known Euler equations.

(7.2)

(7.3)
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For a body with three axis of symmetry

consequently (7.2) to (7.4) become

I = I = I = I and
x y z

_ _" c.J_ (7.5)

-T_ = -_ '_"_ (7.6)

In general, even when the above symmetry does not exist, the

equations (7.2) to (7.4) can be approximated by (7.5) to (7.7) since

WX_ ' ZWy w are kept relatively small.

Since equations (7.5) to (7.7) are completely independent of each

other, only one such as the rotation about the _ axis, is considered

in the following. Le_'_ Ox be _..._rotation.... angle about _ axis with

respect to a reference and _xd be the desired value of the rotation

about this axis. We have the following equations

(7.8)

f.._)__ _,9_ (7.9)

Furthermore, the thruster produces a torque proportion to the difference

_._j- _ with a constant of proportionality K. Therefore the following

block diagram results.

F,gure 7.2 - Block Diagram
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The difference quantity _g- _ is the output of a rate integrating

gyro with a reference axis _)_d" The output Laplace transform is

" ._ ._IYj . 2+ (7.10)- s A_xy+ _._..Z._

This represents an unstable system since the roots of the denominator

polynomial do not have negative real parts. To see this better, let us

assume we would like to turn the vehicle around the._Caxis by l

Then

_(f): _ St+#X " S (7.11)

Consequently

(7.12)

which clearly shows that I_,_ (t) rather than approaching l will

oscillate about the desired value. What is now needed to achieve the

desired goal is referred to as a compensator. A very common way of

stabilizing the above system is to add a rate feedback path. A rate

gyroscope will produce an output proportion to angular rate _

Let the constant proportionality be K_. The block diagram of Fig. 2

is modified as

_ _ +

Flgure 7.3 - The Compensated System

The transform of the output is

I¢I

s2 _I

_r.z/J_K, sj - E_isJ
I-_ _ _._ S;-, k" _',i _" r#l

(7.13)
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The system is now stable (the roots having negative real parts) and the

solution to _d(t) = I is (for Kl small)

I

/7.,4)

which clearly shows that as time is increased, the desired orientation

will be approached.

In the above analysis, the operation of the thrusters were assumed

linear, i.e., the output torque TX was assumed to be proportional to

its input, _j- _ Since reaction jets are commonly used in space

vehicle applications (due to reiiabiiity and weight considerations) the

operation is far from linear and is approximately presented by Fig. 7.4 where

e is the input to the torque_

Figure 7.4 - The Characteristic of Torquers

The block diagram of Fig. 7.3 should be modified.

Figure 7.5 - Nonlinear Attitude Control Loop
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If K l = 0 (i.e. no rate feedback) it is easy to show that the output

will oscillate about the desired input _)_.d(e.g. for _Zd = constant).

As an example, let the desired rotation _Z d be unity and this is

applied to the system as a step command. If o(') i (2 c_"is the

width of the deadzone or inactive zone of the torquer_) the system will

not become active. If ,_/_ I then a torque T_ =z_ will be applied

to the vehicle which will yield (e(t) is the input to the nonlinearity)

2

Z

(7.16)

This continues until e(t) is reduced to f,_ ° when the body will keep

moving then on its own inertia until e(t) = -o(' At this time, a

reverse torque will be applied. Time plot of this operation with and

without K l term (i.e. K l = nonzero and k] = O) will reveal that the

system has a damped response for K l _ 0 and oscillatory response for

K l = 0. In order to verify this assertion, let us define an equivalent

gain for the nonlinearity. Assume the input to the nonlinearity is a sine

wave E sin wt. The output waveform is sketched in Fig. 7.6.

, _

• ! \

F gure 7.6 - Response of Torquer to Sine Imput

The fundamental component of the output waveform is obtained by a fourier

series expansion.
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Magnitude of FundamentalComp.of /_ _ 'T7

The ratio rlr E is referred to as the describing function

of the nonlinearity.

The block diagram of Fig. 7.5 can be represented as

(7.17)

Figure 7.7 - Block Diagram with Describing Function

Now let us conjecture that the loop is not stable for some positive

value K I. Therefore _)_ will oscillate and there is a sinusoidal

value for e(t) such as e = E sin st but with any value for E

the describing function is a simple gain and we have already shown that

for any gain, the system cannot have any sustained oscillation for K I

Consequently, the conjecture is disproved. It can easily be seen that

the conjecture is true if K l = O.

8. Guidance of Space Vehicles

The transfer of a vehicle from a point in space and a set of initial

values for velocities and accelerations to a desired location satisfying

certain conditions on final velocities, etc. is the function of the

guidance of the vehicle. It can be accomplished in two ways: a) open-

loop and b) closed-loop.

- 18-
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a) Open Loop Gaidance

In this scheme, a trajectory which the vehicle should follow

in space is determined a priori. This may be a trajectory satisfying

the desired initial and terminal conditions or, in addition, may be

an optimal trajectory in some sense. For example, it may accomplish

the mission with minimum amount of fuel expenditure, or in minimum time.

In cases where the final conditions cannot be achieved exactly, the

trajectory may result in minimum value for some function of the terminal

miss distance. The trajectory is a function of the mass of the vehicle a

maximum value of available torque, initial and terminal conditions and

the nature of desired optimality. For example, in case of solar sailing

when a vehicle is leaving Earth orbit and reaches Mars orbit in mini-

mum time, two optimum trajectories result depending on whether the

terminal velocities of the vehicle should match that of the orbit or

they can assume any arbitrary value. Obviously, when the terminal

velocities are to be matched, the optimum time of transfer is longer

since this matching is an additional constraint.

8.1 - Solar Sailing Example
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When, by some method, a desired trajectory has been determined,

with respect to an inertial coordinate syste_ in order to maintain the

vehicle on that trajectory, it is required to determine the instantan-

eous position of the vehicle with respect to that coordinate system.

This can be accomplished by two means: I) use the rate gyro's and

accelerometers on the vehicle _ to compute the trajectory which the

vehicle is following, 2) to track the vehicle from another position

whose movement with respect to the coordinate system is known.

In case where, at some time, the vehicle trajectory and desired

trajectory do not coincide, it is necessary to make trajectory correc-

tions by using the on-board engines. A swiveling engine or body

fixed engine can be used to apply thrust (torque) in appropriate

direction, the difference being that in the latter case the vehicle

orientation is determined by the direction of required correction.

b) Closed Loop Guidance

In many missions, the requirements on the accuracy of

achieving the terminal conditions is such that an open loop guidance

is not satisfactory. This may be because of the movement of the

destination point (target) or errors in determining the vehicle tra-

jectory, or difficulties in making exact trajectory correction.

Furthermore, it is always desired to make vehicles more autonomous

(self governing). Consequently, in many cases, the open loop guidance

either is not used at all, or it is only used during the midcourse,

that is, transferring the vehicle from the initial conditions to some

vicinity of the destination and then performing the last portion of

guidance in "closed loop" fashion. A number of examples of closed

ioop guidance is given in the following:

l) Pursuit

When an intercepting vehicle with initial velocity vector V_

tries to intercept with a target vehicle, with say, a constant velocity

VT,one possibility is that the interceptor orients its velocity vector

such that it always goes through the instantaneous position of the

target. This is the example of the dog chasing a rabit. As a two
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dimensional example, let _ (t) be the target path (straight line)

with the initial conditions _r (0) = O, ._ (0) = _gT(_/_)=L_j).

Let the interceptor be at Y = Yo at t = 0 The trajectory that the

interceptor will follow is sketched in Fig. 8.2.

I°

Fig. 8.2 - Pursuit Navigation

It is clearly seen that, although the target has a very simple

flight path, the interceptor has to go through a reasonably compli-

cated maneuver. This is mainly due to the inefficiency of pursuit

navigation. The interceptor has to continuously apply thrust perpen-

dicular to instantaneous velocity vector in order to keep the velocity

vector coincident with the line-of-sight (line-of-sight is the vector

from instantaneous interceptor to target position, this is abbreviated

by LOS and is given with respect to an inertial coordinate system).

A change in direction of the velocity vector can be obtained by

applying acceleration in a direction perpendicular to the velocity

vector which is accomplished by either orienting the swiveling

engine or the whole vehicle in case of body fixed jets in the

appropriate direction. A mathematical model for this system is
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i
I

derived in the following. F,g. 8.3 represents a schematic diagram

of the space vehicle target system. The interceptor should attempt

to maintain the orientation of its velocity vector in the appropriate

direction. A change in the orientation of V I is accomplished by

applying force perpendicular to the direction of V I. This force

will produce a rate of change of the angle , i.e. is pro-

portion to the applied thrust.

J

/

/] _- t.,o/
/

/

!

I

Fig. 8.3 - Schematic Diagram for Interceptor-Target System

Let

V I

VT

aTn

R range

Let us first assume aTn O. We have the following equations

r_ = VT- C_ ( _- I ] _ V_ /'a( _':I;

interceptor velocity (constant in magnitude)

target velocity (constant in magnitude)

the component of target acceleration perpendicular to LOS

(8.1)

(8.2)
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Differentiating, 8.1 yields

i

,,-_ 2, +_2, : 2v_._l,-_,,,.-¢v._.i(_--b:J,-_v:4_ m_'_
- - (8.3)

Substituting 8.2 i,;4tothe right hand side of 8.3 results

(8.4)

where _/r_ _" _/S _ _' 'E:-"6_ )

= Component of interceptor velocity in the direction

of LOS.

From 8.4

w_ _K

If aTn was not zero, it would simply add to the

to aTN/R, hence

i

(8.s)

6' a quantity equal

(8.6)

In order to develop a block diagram, let us assume that over small

in time, R/R = - V = Constant and VIR and R are also constant.ranges

Taking the Laplace transform of (8.6) yields (VIR/R = C)

This yields the following block diagram

f

Y j c_L__ _J_- SfS-2v) (8.8)
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The loop is closed through the navigation law which in this case

attempts to line up V I with LOS. This can be accomplished by

varying _" proportion to _-6 j and in a direction which reduces

the magnitude of _-_. For example

(8.9)

is a constant called naviagation constant. F_om (8.9)

Finally the following block diagram is obtained

Fig. 8.4 - Block Diagram for Pursuit Navigation
(8.11)

It is clearly seen that since the loop tries to make _=XCand since

is varying during the flight, consequently the interceptor has

to apply acceleration all during the flight.

2) Proportional Navigation.

The proportional navigation is the guidance _o_c_ which

keeps the LOS non-rotating. Let the LOS angle with respect to some

fixed coordinated system be _'and its derivative (LOS rotation)

I i

Fig. 8.5 - Proportional Navigation
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From Fig. 8._", it is evident that if LOS is non-rotating, the inter-

ception will occur at some time tf) O. The closed loop system is

mechanized such that it "nulls" out any existing LOS rate. The

information about the LOS rate is obtained by the tracking system.

The equations of motion and a block diagram for the system is derived

in the following.

The derivation of Eq. (8.6) is applicable here. The difference

is only in the navigation law. Here the control loop tries to zero

out any rotation of LOS, namely _ . This is done by letting

I ___

I Substituting (8.12)in (8.6) yields

i Which yields the following block diagram
8

Fig. 8.6 - Block Diagram for Proportional Navigation

The transfer function between aTn/R and ¥ is

I _ _
{_,'._'zV) _......___-------,- _ - , .

_'7 ..... -- sz. 5(,Ic-2_) _ _.,Ic-2vI , j_ t_C_.._..-_

' _- s(f"-_--zv)

I
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It is then clear that since it is desired that the required thrust be

a diminishing quantity, the system should be stable meaning that

Ac- v-3 .z
cK (8.

A ) -z _ (8.,6)
A

The quantity A - _-_JTi_ is referred to as effective navi-

gation constant and the condition for stability is then A _ :Z

It is clearly seen that when the interceptor is on collision course

= ,and aTn 0 the quantity remains zero for the entire flight

which indicates that no acceleration is required.

9. Tracking Systems

In the preceding part, it was pointed out that for closed-loop

guidance of vehicles, a measurement of either line-of-sight angle or

angle rate with respect to a fixed reference is necessary. This job

is accomplished by a tracking system (usually called angle tracking

system) .

A tracking system is composed of two parts: a) an error

detector, which is a device producin 9 a signal proportion to the

deviation of antenna center beam from LOS and b) a control loop

which drives the antenna in order to reduce the tracking error to

zero. If the tracking error is maintained very small during the

flight, the position of the antenna, which is known (can be measured)

gives the information about l_or _ (LOS angle Dr rate).

a) Error Detectors

The following are three important examples of error detectors.

Radar Lobin_l - Fig. 9.1 represents the propagation pattern

of a radar antenna.

I__'_e

"T_._",, " X

Fig. 9.1 - Radar Antenna

Since _ is known, the object is to generate a signal proportion to

6___ where T is the target point. When T is on ox a maximum
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signal is returned. The farther T is from ox in angle, the smaller

will be the amplitude of the return signal. This functional relation-

ship is shownby the curve _ in Fig. 9.1 and can be represented as

where z is the radar output and is the analytical representation

of the lobe and K is proportion to the length OT. Now let us

move the antenna mechanically, or electronically, by the following
rule

where _I is a constant knownquantity. It can be seen that

_ _ t- (9.3)

Multiplying z by sin_.sT and keeping the d.c. term yields

(9.4)

This is the required result. Notice that Zd.c. contains the sign

of _-_ , i.e. the position of T with respect to center of the

lobe ( ffa )"

Error Detection with Fixed Antennas - In certain applica-

tions, it is necessary not to mechanically, or electronically, lobe

the antenna. In this case two antennas can be used to determine the

phase difference between the received signals (Fig. 9.2).

/

Fig. 9.2 - Error Detector without Lobing
- 27 -
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It is easily seen that the distance d is proportion to _'- _

angle. The incident lines from target are almost parallel lines

because the size of combination antennas is much smaller than the

distance to target. The two outputs of the antennas are

(9.5)

(9.6)

Phase shifting z i by 90° and then multiplying

retaining the d.c. component yields

z and z and
1

7.

(9.7)

For small angles (_-_) approximately

d.c. comp. = proportional to #J--_ Again notice that the

d.c. component in (9.7) retains the sign information in 6_-o_.

Optical Ei ror Detector - The idea of lobing can be used

in an optical detector.

Fig. 9.3.

Let four detectors be placed as shown in

4

P
f

/
/
J

Fig. 9.3- Optical Error Detector

i 3

Let the target image be at point T without ]obing. Lobing therefore

will move the image on a circle with center T When the image is

on a detector, an output is produced. The series combination of four

outputs of the detectors for the case of Fig. 9.3 is presented by Fig.

9.4a. If T coincides with O the center of the detectors,then

- 28



the case of F g. 9.4b will result. Consequently, information about

angle of incident light from the target can be obtained from z

-I

Fig. 9.4 - Output Waveform of Optical Detector

b) Tracking Loop.

Any of the above schemes will yield a relationship between

the detector output and OJ-_ which typically can be represented as

in Fig. 9.5 _._

Fig. 9.5 - Characteristic of Error Detectors _ F

The S-shaped form is because when lf'-_ is larger than

certain value, the target falls completely outside the radar or

optical beam.

- 25-



Fig. 9.6 represents the block diagram of a complete tracking

system

•_ /"

Figure 9.6 - Tracking System

over the l_near range of the error detecter, we have

For example if the antenna is initially not aligned with the target

(i.e. ,5 # _) then from 9.8

which shows that as t .__ j_lf)_ the desired position. In

practice, the terms K2/s should be modified to include the antenna

dynamics, and also any filtering of the noise, which may help the per-

formance of the system.
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I ntroduction

Communication system engineering is a demanding discipline.

Theoretical design requires an extensive knowledge of almost every

field of applied mathematics; practical design requires a knowledge

of the operational characteristics of devices, the effects occurring

in energy radiation, etc. Underlying all of these prerequisites to

competence is a knowledge of statistics.

Statistics and its companion subject, probability, concern the

measurement and description of non-deterministic phenomena. This

subject must be broached since information (i.e. that quantity which

is conveyed by the communication system) must be in essence non-

deterministic. Everyone can picture the foolishness of designing a

communication system to transmit the message "the sun will rise

tomorrow." The user of the systems output would not gain any inform-

ation when this astounding news reaches his ears. Thus, the user

cannot know the system input in advance.

Interference in communication systems also demands statistical

techniques for analysis. For example, other random signals in addition

to the transmitted signal may enter the receiving antenna in a communi-

cation system. Since the receiver does not know the signal which the

transmitter broadcasts, it may erroneously "interpret" the signal

sensed by its antenna. Again an analysis of the effects of non-

deterministic waveforms on receivers is necessary to evaluate

receiver deign.

It should be apparent now that the prerequisites must be studied

before we can discuss system design problems intelligently. Part I

of this course will provide a most elementary review of the mathematical

tools required of the communication engineer. Part II will discuss the

components of communication systems and the analysis of system perform-

ance.



PART I

MATHEMATICAL BACKGROUND

A. Complex Variables

A complex number Z is simply an ordered pair (x,y) of real numbers.

As such Z is simply a point in the (x,y) plane.

Y
J

I _ r_ X

I Considering complex numbers as vectors, the sum of two complex numbers

i Z i = (Xl, yl) and Z2 = (x 2, y2 ) given by addition of vector components

However, multiplication, which is not defined for vectors, is defined

for complex numbers

I The additive .i.denti.t.y'or 'Izero" which leaves a complex number Zunchanged under addition is denoted by 0 = (0,0).

i Z+O = (_+o,y*o_ _ 7- (3)

i 'The multiplicat ve identity or"one '_ which leaves a complex number

unchanged under multiplication is denoted by 1 = (l,0).

I
I I-_ = (1_- o,j, _ +o_) __ (._

I - I -

I



We define -Z as the number satisfying the equation

z +(-_b= o (5)

Thus the additive inverse of Z is given by

-z-- (-_,-v) (6)

-1
Likewise Z is the number satisfying the equation

zz-_; 1_ (7)

It can be verified that

x__E___
(8)

The complex numbers can be derived from the solution to the equation

z_ - -I (9)

We all realize that no real number can satisfy this equation.

two specific complex numbers can. Using the relations

However,

-I ° (i-_,o) (,0)

!
[ to (lO) are given by

and equating coefficients of these vectors, we see that the solutions

j z - (o,_5 o,- (o,-_) (]I)

We shall denote (0,I) by i. We see now that every complex

number can be written as a linear combination of the multiplicative

identity I and the square root i of -I, where the coefficients are

real numbers. Thus,

- 2-



z _ x (_,ob . V (o,_')
= ×..t _-V-i (12)

We often refer to x as the real part of Z and y as the imaginary

part of Z .

As we shall soon see, the usefulness of complex numbers in electronic

engineering depends on their multiplicative properties. The evaluation

of products of complex numbers is performed most easily in polar coor-

dinates. If

Then

(14)

We call r the magnitude or absolute value of Z and write

r =1==_

Likewise, we term g the phase or angle of Z

Using the series expansions for sin I_ and cos O, we see that equation (14)

reduces to

(z.SU+

=r , re

The rules of multiplication simplify considerably since for

?__=(A_)x_") = _ e_[_J equation (lO) reduces to

t(e,+ e_'_
7_-,7-L = V,rz _ (16)

-3-



Multiplication corresponds to multiplying magnitudes and adding phase

angles. The inverse of Z reduces to

-LO

7-_ t_ I_ (17)
r"

* -i9
We can define the conjugate of Z as Z = re Then

(_8)

Obviously conjugation can be regarded as changing

expression. Thus

i to -i in an

(_9)

B. Fourier Series

Definition: We say that a function g(t)

exists a constant T such that for all

is periodic if there

t,

(20)

Consider now the complex function of time

where O.3e is a constant. Certainly

function since for any value of t ,

= (2,)

_::_l.oo_t is a periodic

_. _ (22)

where

Theorem:

period

2_11F

T= I_---_

Let

T , satisfying the condition

0

is known as the period of the function.

g(t) be any real or complex periodic function of

(23)

-4-



Then g(t) can be represented by the Fourier series expansion

lq--_y.3

ZIT

where t_e_ T and the an are complex constants.

This theorem simply admits that any periodic function of time can be

represented by a sum of elementary periodic functions of time, namely
k th

_,__'ITt_et We call e [-Ot'_- the n harmonic of x(t).

Suppose we were given a periodic function satisfying (22). The

coefficients a in the Fourier series expansion (24) can be determined
n

via the following integral:

L._a
( 25)m = -,.x_ .o ..J

f,,-

If we expand the integral in (25) we have that

"T 1-

Using the fact that the integral of a cosine or sine wave over an integer

number of periods is zero, we see that

L(,.,,- .,
(27)

which is 0 for m _ n and I for m = n is known as
The function mn

the Kronecker delta function. By substituting (27) back into (25) we

see that T - L _lu.2j_. '_a _T _--_

_=-oo (28)
c

" 5-



and thus the Fourier series coefficients are given by

(29)

for all values-of n

It is interesting to note that the actual value of the integral

(23) can be determined very easily from the series coefficients a
n

since, using (19), (24) and (27), -._.... ,_._ ,

0 d --

I _--_ _-_ -_ I' >LL_\-_'_) _-_e_

I _"=-u"_'_'_"=-_ _; (30)

_,'.0 V"-_ ,

I Thus we have derived Parsevals Theor_ for Fourier series which states
that F'"_-'- --_--_ .... ]

own belowExample I: Consider the periodic function 9(t) s :

i._ t
I

Here A and B are real numbers. Then

I -6-

i



I

I

i

I

I

I

I

I

I

Since (23) is satisfied, g(t) has a Fourier series expans on with

coefficients given by (29).

T -Ln LL,oti";(+_) _-'- equation (29).
a = ":':": ' U (n i

_! 1(t)
I 1/%

ff -.a,,'_E ckt
9

Z-

_:,,.. (_,_,-_/'r)

= f)..... k_.......... :
'V - L_ C,.',,

= TS

Ti-?If

Thus

since integrand has period T

definition of g t)

performing integration

s i nce b4 c = "ZTf/T
L_

and sin _ "= C'_:.:......._._X_.:__.F..._'--

_."> &t

!i<_:h = __
i_, 'r: - M)

From our study of Fourier series, it is now obvious that there exists

a one-to-one relationship between the periodic function g(t) and the

sequence a of Fourier coefficients. In many cases, our main interest
n

is not in the value of the coefficients a , but merely in their squared
n

magni[ude ia i 2 If for example, g(t) denotes a voltage or velocity,
n

'a i 2 will be proportional to the power in g(t) at frequency n/T.
n

Definition: The power spectral density --" --_7)_(_'] of a periodic function

g(L) is given by _o

f %)
" '_'-- : (3Z)

;s ?)where -. denotes a D,rac delta function at frequency n/T.

The Dirac delta function mentioned here is simply a "very narrow"

function with area I, having essentially all of this area at the point

where the argument of the function is zero. Thus for practical purposes

c:., _,. _: = _ (33)

- 7



(34)

Example 2: The spectral density of square wave of example l is given by

I ''
_"_ = .- 0('_

For A = T/2, B = 2, this function has the following graph:

4 L_ " "..

--_._ .-_ ._
"T

l
- !

.- -_.-7-.., k-_h _'_r _I
f

.......), *.,'....( _,.

'- ' " -.i ,4-- ".T." _ "
'j-

The spectral density S (f) defined above is known as a two-sided
9

spectral density, the reason being that S (f) has values for negative
g

frequency. This should not disturb you since we know that cos(-wt) =

= _ _cos(wt) and sin(-wt) - sin wt. Thus _,i _ _ _ v_ indicates the

total realizable power at frequency n/T. The use of two-sided spectral

densities is simply a mathematical convenience.

To obtain the total power at any set of frequencies, we need only

to integrate the power spectral density over the frequency range of

interest. Since Dirac delta functions integrate to one, this integration

simply adds their coefficients ia i 2 Thus the integral of the power
n

spectral density over the complete frequency range should be equal to

the total power in the process.

(35)

-8-



By Parseval's theorem (31), this is equal to the total power in the

process,

Another method of obtaining a function which contains information

only about a involves the evaluation of an integral.
n _

Definition" The time correlation function_a(_) of a function g(t)

is given by the integral

--/('_(,_) (_ ' I_ _t._) -_q:)
< T--_ c\) #..T _ (36)

-T

Suppose we now calculate the time correlation function of a periodic

function. Substituting (24) into (36) gives

_-"..9(X)
--'T

(37)

It can be easily verified with the aid of (27) that the above integral

is equal to the 8mn, the Kronecker delta function. Thus

_/(_ (_ = _ i_,_l_ c L,_o_• (38)

i_ =-UO

It is now obvious that if we expand the correlation function in a Fourier

series in _ , the Fourier coefficients of this expansion will be ja _ 2
2 n

While this approach to determining Ia i appears longer and more com-
n

plicated than a direct evaluation of the coefficients, the result demon-

strated in (38) can be extended to non-deterministic and non-periodic

situations as we shall soon see.

.



C. Fourier Transforms

We can think of a non-periodic function as the limiting case of a

periodic function whose period T has come arbitrarily large. If we

examine the Fourier series representation as

and (29) can be interpreted as follows:

l a -kZ_n± ('¢i(_)_Tc,_ "-- _(_?e _, -.-, GC_c) ".! ,.

T-_), we see that (24)

(39)

Here we have used the fact that uJr - Z_
- _-: , and defined the limiting

values as n/THPf, I/T-_df, and Ta --_G(f) in converting the Fourier
n

series to an integral. The pair of equations (39) are simply plausi-

bility arguments for the following theorem which we shall now state.

Theorem: If a function g(t) satisfies the absolute integrability

relation DO

(40)
- _)

G(f)

then there exists a unique function G(f) such that g(t) and

satisfy the following relations:

k_ "-- _ J

where _ : 2_Tf.

(41)

A list of Fourier transforms is given in Table I.

- 10-



Table 1

g(t)

|

I

elOOZc

%
--_Itl

e

ZT

G(f)

?_.

I

i + LcJT'o

2.o-
O.,._ _ 1..O_"

In this table we define a useful notation for two functions:

0 4;4.o

-ll-

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(5o)

(51)

(52)

(53)

(54)



The usefulness of the transform concept relies on the fact that

manipulations which are difficult in the time domain are simple in the

frequency domain, This statement will become apparent in the course

of our studies. There is a variety of theorems which indicate the

effects of time domain manipulations on transforms. For example, let

gi(t ) and g2(t) be absolutely integrable functions whose transforms are

Gl(f ) and G2(f ) respectively. Then consider the function

(55)

Notice that

_is W_ _oo -ix}
(56)

since gl(t) and g2(t) are absolutely integrable.

transform given by (41).

- i tA.t:.

I -oo _o

Therefore h(t) has a

(57)

Equation (57) describes the effect in the frequency domain of the

manipulation (55) in the time domain.

Applying the transform relation (55) - (57) to the correlation

function of a periodic function given by (38) in the previous chapter,

we see that the transform of the time correlation function of g(t) is

She spectral de.n.s.ity of g(.t). Thus

- 12-



__,o

(58)

Thus the Fourier transform is useful in deriving spectral densities from

time correlation functions. We shall introduce more transform manipula-

tion theorems as they are required.

D. Linear Operations

Engineers are notorious for thinking in terms of system block diagrams.

Suppose we examine the simplest "black box" diagram to determine if there

is a simple way to describe the system.

I

The system operates on the input x(t) to give the output y(t). If

the operation performed by the system has the following two properties,

its description can be significantly simplified.

Definition: A system is said to be linear if for any two inputs xi(t)

and x2(t) which cause outputs Yl(t) and Y2(t), the composite signal

alXl(T ) + a2x2(t ) causes output alYl(t ) + a2Y2(t), a i and a 2 being

arbitrary constants.

Definition: A system is said to be time-invariant if for any input x(t)

which causes output y(t), the input x(t +¢) causes output y(t +t)

for all

As far as these definitions are concerned, x(t), y(t) and the constants

can all be complex functions, though in most cases the inputs and outputs

are real functions of time.

- 13-



Suppose that the input x(t) is given by

_.(t')= e t_t

and the output is y(t). If we apply the constraint that the system

be linear, then when the input is given by

the output is given by

(59)

(60)

(_=') (61)

On the other hand, if the system is time invariant, then for input

the output is

(63)

I
sidered, the outputs (61) and (6]) must also be identical.

!

Since the inputs (60) and (62) are identical in the two situations con-

Thus we have

(64)

The relation (64) is the basis of "steady stat@' linear circuit analysis.

To clarify this statement, let us define

(o)--t-t(R-o') (6s)

where fo = bOo/21T " (Certainly the response y(t) depends on the input

frequency chosen in (59).) If we then evaluate (64) at t = O, and then

perform a change of variables _: = t, the result is

- 14-.



Thus y(t) is obtained from the input exponential harmonic function e i_°t

by a simple multiplication of x(t) be the complex number H(fo). The

magnitude of H(fo) is called the gain of the system at frequency fo'

and the argument (or angle) or H(f o) is called the pha.se-shift of the

system at frequency fo"

Suppose we now examine the operation of a time-invariant linear

system when the input is a Fourier transformable function x(t) with

transform X(f) . We can now write an expression for x(t) involving

exponential functions

-00 d_-_o n=-_ (67)

We have now written x(t) as the limiting case of a linear combination

of exponential functions. Assuming that the system function is denoted

by H(f) and using the linear properties of the system, we know that the

,npot e g vesoutput
and thus the total output y(t) is given by

f
-00

(68)

or equivalently the transform of the output is given by

The transform of the output of a linear system is simply the product of

the transform of the input and the system function.

Equation (69) implies a simple relation in the time domain. If we

retreat to (68) by transforming both sides of (69) and then substitute a

transform integral for X(f), we have

-15-



(7O)

where h(t) is the inverse Fourier transform of the system function H(f).

The integral in (70) is known as the convolution in_ and arises when-

ever transforms are multiplied as in (69). The time function h(t) is

known as the impulse response of the system for the following reason.

If the input x(t) is a delta function (or impulse) _(t), then X(f) = i

and Y(f) = H(f). Taking inverse transforms of both sides gives y(t) =

h(t) and thus h(t) is the output of the system when the input is an

impulse.

.Example 3: Suppose we consider an R-C filter

I

with x(t) representing the applied voltage and y(t) the output voltage

under no load conditions. The operation of this circuit is governed by

the differential equation for the input current.

I
Oo

-16-
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We can now transform both sides of the equation (71) if we can determine

the transform of the derivative of y(t). Using integration by parts:
¢o

(72)



Using the fact that if x(t)--> 0 as t--_+_ since x(t) is assumed

absolutely integrable, then y(+_o) = O, we see that

(73)

since the integral in (72) is simply the transform of y(t). Thus the

transform of (71) is given by

i x(_) (74)

Since (71) is a linear differential equation with constant coefficients,

(74) is equivalent to (69) and the system function of the R-C filter is

I

From (48) in the table of Fourier transform relations, the impulse response

of the filter is

hC÷)=_c O(_)e-t/_c (76)

and generally the output of the R-C filter can be written as

(*-t')Azc.#'t

--iX)

t t'/Rc_C

\ _.(t') e &t'
]_C _ooJ

(77)

using the convolution theorem (69)-(70).

E. A Sampling Theorem

One particular process which occurs in practice is that of sampling.

We shall regard sampling as a delta function modulation process. Thus

the sampled values of the wave g(t) are denoted by

-17-



I c_ oo

In this notation we mean that the area of the delta function _(_(_C:-v_'_')

occurring at time _T is g(nT).

Suppose we assume that gs(t) is Fourier transformable and compute

its transform. To do this we shall apply the analog to the convolution

i theorem ((69)-(70)), which can be derived by simply interchanging f and

t, and i and -i in (70). The theorem states that if we have the trans-

form pal rs

Thus, multiplication in the time domain corresponds to convolution in

the frequency domain.To apply (79) to the right hand side of (78), we must determine the

Fourier transform of a delta function train. A simple form for the

answer is obtained if we first expand the a
$ function train in Fourier

series since it is periodic. By (24) and (29).then, we have

/

(80)

Taking Fourier transforms of both sides gives (using (44)):

m

Equation (81) gives the amazing result that a _ function train transforms

I into another delta function train.

We can now use (79) and (81) to transform (78):

- 0¢- &.
(82)

-18-
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where

Performin_ the integration gives'

e_

T

Oo

W
-- -00

Gs (f) and G(f) denote the transforms of gs(t) and g(t) respectively.

(83)

Thus if G(f) looks like

- v,/ 4_

then G (f) is .

s , , , C_s(4_

¥ _ "T _ T _

An interesting effect offers when Gs(f) is bandlimited, i.e. G(f) = 0 for

_fl>W Then if I/T>2W, the terms in (83) do not overlap and Gs(f )

looks like

J

I i

-2_ _/

T -r

- 19-



I

I

I

I

I

I

I

I

!

I

I Notice that in the frequency range l¢l_w ) _$CJ_)= G(_)' and

i useoutside that range G(f) -- O. This impl es that by of a zonal filter

I we can recover g(t) exactly since

I G(_") -=-T _-I(-r, -') _s<_) ,_ T/-.'_W (8.)

I Using the convolution theorem and (52) gives

-,,v - T • L.n=- _

2.W

(85)

It is worth noting that to estimate g(t) at an arbitrary value of t,

one must have all the samples of the process. This is due to the fact

that the filter T li/-i_ (f) is not casual, and cannot be implemented

in any physical system. Equation (85) can be approximated by physical

systems, and in addition, is a useful representation for signals in

analytic studies.

F , Non-Linear Operations

A real function x(t) can always be expressed in the form

(86)

where V(t)_/ O. In the case where both V(t) and _(t) are "slowly varying"

with respect to a cosine wave of frequency (j3 c , the quantities V(t)

and _(t) have a physical interpretation (see figure). The quantity

- 20 -



t

V(t) can be considered to be the envelope of x(t), which can be constructed

by connecting the peaks of x(t) with a smooth curve. Likewise the

quantity _(t) can be considered to be the phase difference between a

cosine wave of frequency fo cps. and the cosine wave in x(t). We could

equivalently write

where Re {._7_ denotes the real part of {'_ . Functions where V(t) and

_(t) have physical interpretations as envelope and phase, are called

narrowband functions. Most transmitted signals in communication systems

are narrowband.

Using the envelope-phase representation, it is possible to analyze

the output of a class of zero-:memory non-linear devices.

Definition: A zero-memory device has the property that its output at

time t depends only on its input at time t

Thus for a zero-memory device with input x(t) and output y(t) we have

= C (88)

where g(.) is a known function. As usual the concept of a transform

is quite useful here. Since the description of the device does not depend

on time, we can state

oo L ×C-O

_00
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I where the transform relations is between the x and f domains. Let us

i make the substitution

The original constraint on this technique was that the function g(.) is

I we converted the problem to two-sided
Fourier transformable. In (90) have

i _Pclo_A_sff_i_u_tation. We can expand the exponential using the

_o

where I_(Z) is the modified Bessel function and _= _L| . _r_=c_

I III .} _ _,_ ..,

Of course in applying (91) to expand _- we shall use the envelope-

phase representation for x. Thus (90) reduces to

i We cannot proceed further without defining the zero memory device charac-
teristic g(e). It is worth noting that we have in some sense created a

harmonic expansion of Y(t) with t?.e m th term in (90) denoting a signal

i with power in a frequency range around _ cps.

An important class of zero-memory devices_-'tare the half-wave __._th

law devices which have the following characteristics:

I ('c ,_<<o
-'_(_") = rex _ ., x >..c (gs>

| C
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th
The _ law device characteristic is not directly Fourier transformable

but the by shifting the line of integration slightly to the right of the

imaginary axis (see (92)), a legitimate representation for the transform

(94)

If we make this substitution in

m,,

cu,_,,.,)v'c.__--o.L,,,-,o..%t*¢u'__] (95)

(96)

-z_j
(97)

- J -?_>-'%_ ....

(98)



Using the last property in (98), we see that for _-7.J
a positive

integer, _1(__ _') is infinite and C Cz_,_n_--C,

Many practical devices do not have zero outputs when x(t) < O.

Definition: A full-wave even device is one whose characteristic satisfies

the relation

A full-wave odd device is one which satisfies

Suppose we let X_'('X-_) = L)(F_')_(_ be identical to 9(x) for x > 0

and zero otherwise. We can indicate full-wave even and odd devices by

the following diagram:

I

t

-I

-I -I

full-wave odd device, g(x) = _'(x) - x6)(-x)

- 24 -



P
I

i
For _zJth law devices, _(x) is the same as g(x) in (93), namely it is

the half-wave device. Thus the quantity y+(t) (see diagrams) is given by

If'we substitute -x for x in (90) to evaluate y_(t), and use the fact

even .G )
Thus for the)J_-fi-_-_ full wave device:

I t_--J oo

'- _=O

tTt _¢-WCW-_
( _aa3

Thus for an even full wave device, the output has harmonics which are

even multiples of cO o. Odd multiples of 6.) ° indicate the harmonics in

the output of an odd law device.

4: Suppose we wish to recover the envelope of x(t) ='_/(_)CO-3_'_*¢_t3_Example

If we pass this through a full wave even device with _ = 1, (see diagram

I below)

the output is given by_o

I V t and Y'_ are slowly varying tunctions time.f_ ( ) __. _ of , then the

Fourier transform of _L. ___-T(_ ro

I 2on-ze_/(_,3 for a small range
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of f around
is a narrowband process about _v-t_eo . if we then pass y(t) through

a zonal filterF_ (f), the output Z(t) of the filter is given by

=(,_= Z C(_,o_VCt3 = Z_.¢VC_3

since all the harmonics for _ # 0 are removed by the filter.

G. Random Variables

Not every voltage, electric field, etc. in a communication system is

predictable, certainly not the information to be transmitted (otherwise

why sent it?). The analysis of performance must be based on a thorough

understanding of the random phenomena, which can occur in the process of

communication. Rather than invoke aii of the mathematical machinery of

probability of statistics to handle this problem we shall describe here

only a few of the basic ideas involved.

Suppose we desire to build a communication system to inform our

alumnae of the number of girls in a I0 student engineering class. We

know on the basis of previous experience that .95 of the classes contain

no girls, .04 of the classes contain I girl and .01 of the classes (if we

are lucky) contain 2 girls. No class ever contains more than 2 girls

( a general principle). We can now define a function which describes our

estimate of the future enrollment based on past experience.

_CL_S

-p(_-,)= ,o4-
"p(.?..b= ,o I

P(n) is called the probability function of n.

functions must satisfy the relations

-_Cnb _o
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where N is the range of values of n The number n is called a

discrete random variable.

We may desire to compute the expected value of a random variable.

For instance, in the above example a reasonable question to ask is, "What

number of girls do you expect to be in the next engineering class?" To

answer this question we compute the .expected value of the random variable n.

N

In our example

the expected value of a random variable is simply an average which is
Ob_

weighted by^a priori guess (before the fact) about the relative occurrence

of the random variable.

Minor modifications are required to describe continuous random variables,

i.e. random variables which can take on a continuum of values. Consider

the problem of measuring the resistance of a I..CL (nominal) resistor.

Due to imperfections in the resistor, electronic noise in the meter, etc.,

the meter needle may indicate any of a continuum of values on its scale.

Our model for this situation based on past experience might be the

following:

(io5)

The function p(r) is known as a probability density. To obtain the

fraction of the time that we expect the needle to read between a and b,

i.e. the "probability" that a_r_ b, we need only compute the integral
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This is a general characteristic of all probability densities. Alon9

with (106) all probability densities must satisfy the conditions

I p( b )o
pLr3c_r =1 (i07)

2

where R is the range of r.

The constant K in (105) is chosen to satisfy (107), in this case K & i.

To calculate the expected value of r, we simply integrate r weighted

by its probability density.

-R

Certainly there is an analogy between probability densities and mass

densities. For example if we equate p(r) with a mass density, then the

mass located between a and b in a rod lying along the r axis is given by

(I06). Likewise (107) implies that negative mass cannot exist and that

the total mass of the rod is unity. The expected value of r given in (I08)

is simply the center of mass of the rod. This analogy can be further

extended. If we spin the rod about an axis perpendicular to the r axis,

the spin axis passing through the center of mass, we have for the moment

of inertia about E _ r} :

The equivalent quantity to the moment of inertia about the center of mass

is known as the variance of r. Notice that by expanding the right hand

side of (109) we see that

I c C b& c (ll0)

which is the usual equation for the moment of inertia when the axis of

rotation is translated. Several fundamental points must be understood:

!) E _ r_ is not a function of r, but simply a number which depends on

the shape of the probability density of r. 2) A function f(r) of a
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randomvariable r is a new randomvariable with a new probability density

which can be derived from p(r) and the function f. In deriving (109) we

have used the consistency relation (which can be proven) namely

F- T_

Equation (]!i) states that the "probability mass" which rou associate

with a point f, is the same as the total mass which you associate with all

points r which give the value f(r) for the random variable. It is this

idea which is used in the derivation of p(f) from p(r) and f(r). In (109)

-_r_) _- _--£_r_) 7- and the expected value of this function of r is

the variance of r.

Example 5: A probabiiity density which occurs repeatedly in communications

is the Gaussian (or normal) density.

2

1""" .)

It can be verified that for the Gaussian random variable
X_

(If3)

7.-

(If4)

T_ Ga.u 5_o__-

_-_- l'n _ o- _(

We note that in the example of measuring the resistance of a I _£Lresistor,

the probability density is Gaussian for positive values of r only. How-

ever, the parameter v_n = I and _ = .I implies that for r < O, (I05) is

essentially zero anyway and we might as well consider the mean variance

of r to be l and .Of as in (112), (If3) and (If4).
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The variance of a random variable is an indicator of the amount of

uncertainty about the values which the random variable may take on.

Suppose we calculate the probability that a random variable will be more

than _ from its expected value. By (106):

Continuing by placing a factor greater than i in each integrand and then

expanding the region of integration,

C_

(If6)

Equation (116) is known as Tchebycheff.'s inequality, it indicates that

for any positive number _, as (E-_---_ 0 , the probability x varies

from its expected value by more than _:, goes to zero. Tchebycheff's

inequality is the basis for many useful theorems in communication theory.

H. Random Processes

Interference or "noise" in a communication system is usually a

continuous process, and as such, cannot be described by a single random

variable. Suppose we imagine that we can write down or draw all the

possible waveforms x(t) which might occur in a system. If we sample the

waveforms at a particular time, say to , then X(to) can be considered to

be a continuous random variable having an appropriate probability density.

Thus the ensemble of waveforms can be considered to be a (possibly un-

countable) collection of random variables, a particular random variable

being denoted by the time of the sample which it represents.

It is not enough to describe the process by the probability density

of each of the random variables since their values are not generally

determined independently. To describe the process completely, we must

be able to state the joint probability density of any finite number of r_o_ Car,a_
_*_e
random process. Suppose we now denote the joint probability density for
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X(tl) and x(t2), as P(Xl, x2). The probability that in any waveform from

the ensemble, x(tl) and x(t2) satisfy the relations

(117)

I

I

I

I

I

is given by Joi Io

(St,I _l.2
(1_8)

Of course the joint density is subject to the conditions

oo

(119)

If we ask the question, "What is the probability that -_( x, # _t and

_ _ _ _ ?"_ this is simply equivalent to asking '"Ahat is the

probability that -_ _, _ _, ?", since we allow x 2 to take on any

value. Thus from (I18) the joint probability density must satisfy the

consistency relation
b,

(120)

or differentiating with respect to the upper limit, we see that

I -_Aoc.,. (121)

In this manner we can obtain the density of X(tl) or x(t2) from the joint

density P(Xl, x2).

Suppose that t2> t l, and we observe X(tl) but we have not observed

x(t2). We can ask the question, "What is the probability density

of x 2 conditioned on the fact that x I is known?" A consistent method by
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the axioms of probability, for calculating the conditional probability of

-oo_ _ _ for a given x 1 is to compute the probability of the

simultaneous occurrence

for very small values of l_x, and multiply by a su;table, c--6-n-stan-t ........so that_-_"A

the value of x 1, has probability I. We can do this quite easily via the

following calculation:

b_

(123)

Notice that when b2 =oo , the numerator of (123) is the same as the

.... L.._ _f_-z._i .... r=to_ _ I _,,_r-oo<_,_oo FvaluatinqdenominaLor d,,u -,,u_ 1- - - -

the right hand side of (123) with the aid of (i18) and (121) gives

_ _-->0 "-

Cancelling

fact that

that x I = b i in the limit as _ _ , we have that

x in numerator and denominator (we have already used the

_x is small in deriving the second line of (124_ and noting

(125)
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Differentiating with respect to b2, we have

( !26)

where _3_W,|_,') satisfies all the characteristics of a probability

density. The density "_-_Xb is called the conditional probability

density of x 2 given x I. If _::___._')=_)(,_ for all values of x l

and x2, then our a .priori conception of x 2 does not depend on the observed

If x I is independentvalue of x I and we say that x I is independent of x 2.

of x 2 then (126) reduces to

...... " " imint density can b determined from individ-

ual densities is the case when the variables are independent.

We shall define the expected value of any function _,,_'_:)

of x I and x 2 as oo

I In particular, we define the correlation of x I and x2 as

n_ "

I Rx(tl, t2) is called the ensemble autocorrelation function of the random

I process x(t).

I Example 6: If the joint probability density of all finite numbers of

samples of a random process is Gaussian, the random process is Gaussian.

I Two random variables from a Gaussian random process must therefore have
a joint probability density of the form:

I -a-' q'-U
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where m I and m2 are arbitrary real numbers, O"1 and 0" 2 are arbitrary

positive numbers, and /0 is a real number, having absolute value less

than I.

Note that the right hand side of (130) can be factored as follows:

(131)
L

We see that ._O[_i_'_ is the product of two Gaussian functions, one with
2

mean m I and variancP_ _'I ' and one with mean ¢v_4-p0- (_) and
variance (l _" 7"

-_ _ If we integrate (131) with respect to x2, from

(97) we should obtain the density of Xl, Thus, using the fact that

Gaussian functions must ;1_Legrate to 1, we ,,_v_"....

Applyin 9 (126) weJsee that the conditional probability density of x 2 given

x I is

(133)

We note further that if p=O} _(X_.I_,) is not a function of x I, and

therefore x 2 is independent of x I.

W,th the aid of equations (I12), (If3), and (If4) we can now calcu-

late the correlation function of the random process in terms of the

quantities _n, ) _ __ _fO, 0"; Cx_d _ .

-00

By applying (112) and (113) the result of the inside integration is the

mean of the probability density of x 2 given x I.
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(_35)

The first of these two integrals can be solved again using (112) and (I13),

and the second can be solved with the aid of (llO), (If2) and (I14).

The function _ depends on the choice of sample times tI and t2 for

the calculation of correlation, and is usually called the normalized

r_,,_ ;=_r= _f _he process_vv_r,_,,_ _. _.,

o-cc_

(137)

I. Spectral Densities of Stationary Processes

As we already know, transient analysis of circuits with determin-

istic signals is more difficult than steady-state analysis under the same

conditions. The same effect is present when we consider the input of a

circuit to be a random process. The term analogous to steady-state, which

applies to random processes is the word stationary. There are several

ways of picturing stationary processes: a) If one of an ensemble of time

functions will occur with probability P, then one of the same ensemble

translated by an arbitrary amount of time, will also occur with probability

p ; or b) the expected value of any function of the random process, is

independent of time, or c)]

Definition: A random process is stationary if for every arbitrarily

selected finite number of samples of the process, and every value of the

parameter T, the probability density of the samples satisfies the relation
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Thus, the probability density of two samples of a random process p(x(t),

x(t + _: )) can only be a function of the time difference C _ if the

process is stationary. Furthermore, from an inspection of (]29) with

tC=t_r3::_ _=t , we see that the integrand of (129) is only a

function of %: and we canl re-define the correlation function of a

stationary process to be

In the analysis of linear systems, we found it convenient to trans-

form the input of the system and deal with a frequency representation of

the output. Unfortunately, sample functions of stationary random processes

are not generally Fourier transformable, and even if they were, we must

deal with a whole ensemble of possible input processes, i ..... " of _-_

input signal. Recall however, in our discussion of deterministic periodic

signals, an alternate derivation of the spectral density of a periodic

signal was given by the Fourier transform of the time autocorrelation

function. For stationary processes, in most cases of interest we have

T

= = _'_ 39)

That is, the result of calculating the ensemble autocorrelation function

Rx(_) as an average of _%a_(_ for any given t is equivalent to

calculating the time average of _(£_(_ for one sample

function of the process. Processes which satisfy (139) are said to be

correlation ergodic. Our intuition should now tell us that a good

representation of the spectral density of a stationary process is the

Fourier transform of its ensemble autocorrelation function.

Definition: The spectra1 density of a stationary random process x(t) is

given by: oc_

(14o)
_(p(,

The average power in x(t) is given by
- 36 -



The average power in a random process can be reduced to

(141)
-oo

by use of the definition of a correlation function and the Fourier trans-

form relation between Rx(_) and Sx(f).

The spectral density of a real random process can also be shown to have

the properties

Example 7: Consider the random process WCJ_=(__'_b_o_t,_)where ('_o is

known and _ is a random variable with ._3(G')= _ _-_(0_

The time correlation function of one sample function e_x:_(_T-P_o).

is given by

"T--->Oo

T

2_T
--T

- "2ZT
T->oo

( 43)

The ensemble correlation function of the process is given by (using (III))"

z.l"t- _
-1T

Z

(144)
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From (143) and (144) we have verified that x(t) is correlation ergodic.

It can be verified that x(t) is actually stationary. The spectral density

of the process is (using (46)):

m (145)

and the average power is Rx(O ) = ½.

It is now possible to investigate the basic properties of the output

y(t) of a linear filter when the input x(t) is a stationary random process.

We can derive the average value of the output as follows:

_(_(_= _---{_(_-_(_&_ (146)

where h(t) is the impulse response of the linear filter. In (146) we have

used the convolution integral representation for the output of a linear

filter. In almost all cases of practical interest it is possible to inter-

change the order of integration over _ and computation of expected value,

since both are linear operations. If we do this, then (146) reduces to

l(v[_(_ _ _ £___(_'_ (147)

Since for fixed values of t and _, _(_-_ is a random variable with

known expected value mx(_-_ and h(_) is a constant>we have that

Thus we can treat the expected value of a random process as a deterministic

signal in analyzing linear operations.

The output ensemble (or time) autocorrelation function can now be

computed using the same techniques.

49)
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Using the fact that conjugating an integral is equivalent to conjugating

the integrand, and computing expected values before integrating over _

(_ gives _oand

-00

(i50)

Let us now assume that x(t) is stationary and therefore that the correlation

function of x(t) depends only on the difference in sample times. Thus,

using (138):

: - t_, i*l t _s d_Ul£ (15i)

This expression simplifies greatly if we take Fourier transforms of both

sides. Then

= ,_{"__@.,¢) h (_.?_'?¢}¢_o, t(,52)

Let _tt= _S-IX-k_ Then the integrals can be separated.

(153)
By using the transform domain, we have been able to significantly simplify

the computation of the statistical characteristics of the output of a

linear system.

Example 8: Let x(t) be a real, stationary, Gaussian random process with

mean zero and correlation function G-_e. -l_ Note that the average

power in x(t) is given by(using (86) and (If7)):
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( _54)

and the normalized covariance of x(t) is given by

(155)

The spectral density of x(t) is given by Fourier transform pair (49).

\ .+ co-,_ (i 56)

Let x(t)be the input to an R-C filter with impulse response_--k_C L)(:+-_--_-_//_C'_

+(l_b(Lo_) 3 (See example 3).and hence system function £_ -i

We can use the basic result (153) to find the spectral density of the

filter output y(t).

's,j =
7_ z.. I z

+C c
(157)

To find the output ensemble correlation function using the transform

table, we can make a partial fraction expansion of (157).

Using (49) to calculate the correlation function of y(t) gives

(159)

Since the expected value of the input is zero, the expected value of the

output is also zero by (148). Thus the average power in the output and

hence the variance of the output are given by"

"7..
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One very important result which we shall not prove here is that linear

operations on 6aussian processes yield Gaussian processeS.Thus from (159)

and (160) we see that the normalized covariance of y(t) is -_Ce-tl:l/T 2 _C.TM)

The joint density of y(t), y(t +'_) is of the same form as (130), with

appropriate substitutions.
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PART II

COMMUNI CATI ON SYSTEMS

A. Noise Sources

The radio communication channel is characterized by the type of inter-

ference that it places on the reception of electromagnetic energy radiated

from the transmitter. These disturbances may be divided into three cate-

gories. One always present, and strictly unavoidable form of interference,

is thermal noise in the receiver components. Modern technological advances

in low temperature receivers, however have reduced this form of interference

by an order of magnitude or more. In high frequency communication via

the ionosphere and in channels employing tropospheric propagation, often

a more serious form of interference is fading and multipath propagation

of the signals. This can usually be characterized as a random linear time

varying transformation on the transmitted signal. The third type of inter-

ference is man-made electromagnetic radiation at frequencies within the

receiver band. This is of least interest in all but certain military

applications (for example: jamming) since it can be avoided by providing

regulatory and logistic precautions.

Since there has been an increasing emphasis on line-of-sight communi-

cation with space vehicles and satellite relay systems, the study of

communication channels perturbed only by additive thermal noise has

extensive significance. Since this is the one unavoidable form of radio

frequency interference common to all space communication applications, it

is reasonable that it be considered first. Furthermore, the performance

analysis of some of the analog and digital communication systems we shall

consider are relatively simple when the disturbances are additive. There-

fore, we shall restrict attention solely to communication in the presence

of additive thermal noise.

The thermal noise power spectral density in an R ohm resistor is

where k = 1.38 x lO"16 ergs/degree is Boltzmann's constant, and T is the

temperature in degrees Kelvin. We shall refer to the one-sided noise

power density normalized to a one ohm resistor as
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watts/cps

Thus, if the receiver system temperature is T degrees Kelvin, and the one-

sided noise bandwidth is W cps, the total noise power at the receiver

front end is N W watts.
o

B. Received Signal Power

We will also find it necessary to know the power arriving at the

receiver which was radiated from the transmitter; that is, signal power

at the receiver. This will be determined in terms of certain significant

parameters which characterize the transmitter and receiver subsystems.

Towards this purpose, an "effective area" of the receiving antenna,

A_ _ is defined so that the useful power, _ , received by the receiving

antenna is given by _,,i= .... multip];ed by the average power density, D r

in the oncoming wave. Hence

For antennas with large apertures and with uniform illumination, the

effective area is approximately equal to the aperture area.

Many antennas have a certain directivity as compared with an imagined

isotropic radiator, which radiates (and receives) equally in all directions.

This is an advantage if we know the direction from which the radiation is

arriving, since it results in considerable savings in power. The amount

of savings is frequently expressed as the gain, g, of the antenna, defined

as the ratio of power required from the isotropic radiator to produce the

given intensity in the desired direction to that required from the actual

antenna. Antenna gain is in general a function of direction about the

antenna, and of the condition of impedance match in the associated wave

guide. When not otherwise specified, it will be assumed to be the value

for a matched load and for the direction of maximum gain.

The power density at the receiver is the directional power density at

the transmitter, D t, divided by _/7"_ , where R is the distance from the

transmittin 9 to the receiving antenna. The surface area of a sphere of

radius R is _77"A _ _
o=

Thus Dr : _ 7"f/_ _
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In terms of the transmitter power, Pt' the transmitter power density is

Combining these relationships, the total received power is

This is one form of what is often termed the radar equation.

Therefore, with knowledge of Pr and No, we can specify a value

for signal-to-noise po_r ration, which we shall see is a fundamental

system parameter.

C. Amplifiers

It has been noted that noise is an unavoidable part of any communi-

cation system. In space telemetry systems, this noise is essentially

additive, white (i.e. flat spectral density) and Gaussian|y distributed.

Since, as we shall see, the ratio of the signal power to the noise power

essentially determines the performance of any communication system, an

improvement can be attained by either increasing the signal power at the

receiver, or decreasing the noise power. W shall now examine methods
/

for accomplishing both of these tanks.

The most significant noise contribution in most space communication

environments arises in the initial stages of the receiver. Since the trans-

mitter operates at relatively high signal levels, the signal-to-noise

ratio at the tranlmitter can be kept very large. Background radiation at

the radio frequencies generally used is relatively insignificant (and,

in any event, unavoidable). At the receiver, however, the signal power is

extremely low so that any noise contributed in the initial process of

amplifying this signal may be, in comparison, most significant. It is

at this stage that the greatest effort is demanded to decrease the additive

noise, and it is here that the most important progress has been made.

The earliest technique for the low-noise amplification of microwave

frequencies involved the use of the "traveling-wave tube. '' The traveling

wave tube developed during World War II relies upon the interaction between

an electron beam by passing it through a wave guide, generally in the
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shape of a helix. Since electromagnetic energy traverses linearly along

a waveguide at nearl.y the velocity of light c, its rate of progress along

the axis of the helix is approximately ( _ /L)c, where _ is the

length of the axis of the helix, and L is the length of the wave guide

comprising the helix. Thus it is possible to make the velocities of

linear propagation of the signal and the electron beam equal. When this

is done, there is an interaction between the electric field of the signal

and the electrons in the beam. The electron density is increased or

decreased depending upon the intensity and direction of the field. This

"bunching '_ in turn causes the field to be intensified in proportion to

its original strength, thus producing amplification. Extremely large

amplifications over a wide band of microwave frequencies are, indeed,

possible with this technique. The noise arises, as _',s,,=1_., __h_r_,,_........ the

electrons do not all have the same energy or velocity. Thus the bunchin 9

cannot be perfect. Since the electrons aFe not all ,,moving ,_!ith the same

velocity, they exhibit a counter-tendency toward a random distribution.

This appears as noise at the output. Much effort has been made to decrease

the noise inherent in traveling wave tubes, and amplifiers using these

tubes have been built with effective noise temperatures of less than 300 K.

We now consider the two more recent and now principal types of low

noise amplifiers: the parametric amplifier and the solid state maser.

D. Parametric Amplifier

The action of the parametric amplifier is commonly compared to the

method in which a child, sitting in a swing, is able to increase the

amplitude of his swinging arc. At the height his displacement, when the

swing changes directions, the child pulls back on the ropes, thereby

slightly increasing his height, and hence his potential energy. At the

bottom of the arc, the tension on the ropes is relaxed so that this

potential energy is entirely converted into kinetic energy. Because the

maximum height was increased this kinetic energy is greater than it would

have been and, at the next peak, the potential energy has increased over

its value at the previous peak. The energy of the child, therefore, is

converted into oscillation energy of the swing.
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In the same way any oscillator or resonant device can gain energy by

being IIpumped_l at the right times. In fact, it can be shown that the

oscillator exhibits a net energy gain even if it is pumped at the wrong

time, too, so long as at least some of the pumping occurs at the peaks

and troughs of the potential and kinetic energy storage cycles.

As suggested by the name, a parametric amplifier (or paramp) consists

of a device in which a parameter, such as an inductance L or a capacitance

C, is varies periodically. Recalling the energy relations

_AJ_ m

where i is the current through L and v is the voltage across C it is seen
P

that varying L or C can very the energy in the circuit. Moreover, it is

noted that the phase relation between the varying parameter and the signal

is important for efficient action. In the case of a variable capacitance

it is noted that the energy can be increased by decreasing C when v is

near the positive or negative maxima ( since ,_- = Q/C ) _ being the

charge). In practice, a resonant circuit, tuned to the signal frequency,

is invariably used because it is difficult to obtain large changes in

capacitance.

To illustrate the mechanism by which energy can be transferred from

a _Jpump _ which drives an energy storage element into the fields of a

resonant tank, consider the simple resonant circuit of Fig. 4-1. Imagine

that it is possible to pull the capacitor plates apart and push them

together again at will. Suppose that at the time the voltage across the

capacitor goes through a positive or negative maximum the plates are suddenly

pulled apart. Work must be done in separating the charge on the two plates.

The energy goes into the electric fields existing across the plates. The

capacitance is reduced and, using _ = Q/C, the voltage is amplified.

Each time the voltage goes through zero, the plates are suddenly pushed

back together again. When the plates are pushed together there is no

charge on the capacitor, so no work is done or required in this operation.

The net result is amplification of the voltage across the capacitor, the

flow of energy being from whatever pumps the plates to the fields of

resonant circuit. This is illustrated in the vo|tage curve labeled (a).

- 46 -



"

Fig. 4. I Simple Resonant Circuit and pump to illustrate the mechanism

for the variable parameter principle.

The crosses indicate a sudden pulling apart of the plates, the circles a

sudden pushing together of the plates. Note that for this circuit, the

pumping is repeated periodically at twice the frequency of the signal.

Note also that here a phase condition is necessary for amplifying the

circuit voltage. If the plates are pushed together when the voltage is

high and pulled apart when it is zero, the energy flow is in the opposite

direction. The voltage is then attenuated as shown in curve (b).

The next step in the description of a parametric amplifier is to

consider a two-tank circuit as in Fig. 4-2. Here, there is no phase

restriction. In this case, the variable capacitance serves to couple

together two different tank circuits of resonant frequencies L_ t and

CL)_, respectively. The variable capacitor is driven sinusoidaliy at

a rate (Jo 3 = c_j -I-(Jo_. If a voltage exists across one of the tanks

at its resonant frequency, a second voltage is developed across the second

tan_ at its resonant frequency by the mixing action in the variable capaci-

tance. The phase of the second vo]tage is automatically adjusted so that

the net energy flows into the tank circuits from the pumped capacitor.
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Fig. 4.2 An equivalent circuit for the two tank variable parameter
system.
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I
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Thus far, what has been described is obviously suitable for setting

up and maintaining oscillations. The energy transfer mechanism is also

suitable for amplification. For example, in FLg. 4-2, assume we couple

a signal generator and an output load into one of the tanks, say tank 1.

The signal generator, of course, should be tuned as closely as possible

to _O 1. The magnitude of the capacitor variation, that is C3, should be

reduced to a value just below the point where oscillations occur. An

amplified version of the input signal will then appear at the output load.

What has been described here is a two-terminal device. An immediate

problem arising from such devices is that there are no separate input and

output terminals as in a vacuum tube amplifier, for example. Fortunately,

this problem was solved by the concurrent development of the ferrite cir-

culator. This device permits a separation of incident and reflected

waves and thus provides the equivalent of input and output terminals.

Fig. 4-3 shows a schematic diagram of an antenna coupled to a load through

a two-terminal amplifier. Without a circulator it would be difficult to

exploit the low noise properties of a negative resistance amplifier such

as the paramp because the noise power from the load resistor would be

amplified along with the incident signal and noise. What actually happens

to the noise power from the load resistor is that it is radiated out into

space by the antenna.

The parametric amplifier is a low noise device principally because

the shot noise inherent in vacuum tube amplifiers is absent. The salient

feature of these devices is that no refrigeration is required, thus



making its cost only a small fraction of that required for the maser,

which requires cooling to liquid nitrogen temperature. It is generally

conceded, however, that the maser is a superior device, and a discussion

of the maser follows.

Fig. 4.3

I I
I I

Utilization of circulator with L.v .... :_ i ...... ._; _;....._, ....,,a, _..........c amp!...ers

E. Masers

Probably the most succesful low-noise amplifier yet developed, however,

is the "maser" (acronym for microwave amplification by simulated emission

of radiation). The electrons in the crystal lattice of any material, like

all electrons, spin about some axis. The orientation of the spin axes

are restricted to certain positions, and normally the vast majority of

the electrons are in the lowest energy position. If the difference in

energy between the lowest two energy levels is A E, an amount of energy

_ E is absorbed by the crystals when an electron makes a transition from

the lowest to the next lowest level, and an amount of energy A E is

radiated when the reverse transition occurs. Normally transitions occur

equally often in each direction so that the net radiated energy is zero.

The frequency of this radiation, we have Plank's equation, must be

_E

h

where h = 6.6 x 10-]4 joules seconds. If the crystal is radiated with
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energy at the frequency AEfh , electrons are caused to make the trans-

ition to the higher level and energy is absorbed. By irradiation with

energy at a higher frequency f_ it is possible to excite the electrons

to a still higher energy level E _ = hf j By the proper selection of a

crystal it is possible to achieve a situation in which electrons, excited

to the level A E j can decay to the level _E, but cannot decay further,

to the ground level except in the presence of external radiation at the

frequency f = A E/h. It is thus possible to create a situation in which

the,majority of electrons are at the next to the _owest energy level.

When this is the case, a signal at the frequency f when applied to the

crystal exhibits a net increase in energy due to the preponderence of

electron transitions to the ground level which it triggers. Thus, energy

is transferred from the higher excitation frequency to the crystal, and

from the crystal to the lower signal frequency. Again, the resulting

amplification can be sizeable.

The noise generated in a maser amplifier can be exceedingly small.

It is due to fluctuations in the radiation field in the neighborhood of

the crystal. These fluctuations can be caused by thermal agitation of

the electrons causing a noise spectral density Nth = kT where T is the

actual temperature (in degrees Kelvin) of the crystal. In addition,

however, radiation is emitted due to spontaneous electron transitions

which according to quantum mechanics, give rise to noise with a spectral

density Nq = ½hf. For microwave frequencies the total noise _ = Nth + Nq

can be quite small and masers have been built with an effective noise

temperature of less than 10°K. Note, however, that the N term is independ-
q

ent of temperature and hence cannot be reduced by cooling the crystal.

This term, being proportional to frequency, becomes more significant at

higher frequencies. At frequencies in the visible light range, for example,

(masers which operate at frequencies approximating those of visible light

are called lasers, the m of microwave becoming the I of light) the effective

noise temperature increases to about 20,0000 to 30,O00°K, thus seriously

countering some of the real advantages associated with the use of lasers

in space communications.
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F. Antennas

Another method for overcoming the severe conditions encountered in

space communications due to the vastly increased distances between the

transmitter and receiver is through the use of high gain antennas. Since

we are interested in communication from a point to a point rather than

from a point to many points, as in commercial radio, we clearly want a

somewhat different antenna design than that commonly used in the latter

case.

In convential AM radio transmission it is desired to radiate equally

in all horizontal directions. To accomplish this, verticle or "dipole

antennas" are used with heights which are ideally, one half of the wave

length of the frequency radiated. Since they radiate horizontally, with

little energy being transmitted vertically, they exhibit gains which are

greater than one; in the case of an ideal dipole antenna the gain in the

equatorial plane is 2.15db.

For space communication, however, it is desired to radiate energy

only between the one transmitter and the one receiver. (There may be

more than one receiver in practice, but at deep space distances, the earth

itself is effectively one point.) It is therefore necessary to be able to

direct the radiated energy in a narrow beam towards the receiver. This

is most effectively accomplished by focusing the energy by means of a

reflector in the shape of a parabaloid. A parabola, it will be recalled,

has the geometric property illustrated in Fig. 6-1. To the extent that

the angle of incidence of a microwave beam is equal to the angle of reflec-

energy originating at the focal point and striking the antenna,

be reflected in a direction parallel to the axis of the antenna A-A'.

6.1 Direction of reflection from a parabolic antenna.
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Unfortunatel'y, however, the wavefront will not remain constant with

a diameter equal to that of the antenna, but will increase in area. For

an intuitive understanding of the reason for this spread consider the

illustration in Fig. 6-2. The observer at point C"sees" energy reflected

from various portions of the surface of the antenna. Consider the signal

reflection points A and B. Since C is closer to A than to B the energy

from B must travel farther before it reaches the point C. If the geometry

is such that the distance BCis exactly one-half wave length further than

the distance AC, then the radiation from the two points A and B will

arrive at C exactly 180 ° out-of-phase with respect to each other. The

electromagnetic fields will have equal amplitudes but opposite signs and

will, therefore, completely cancel each other. When C is too close to the

axis, there will be no two points on the surface of the antenna such that

the difference in their distance to C is as great as one-half wave length.

As the distance from C to the axis increases, the points A and B satisfying

the property described above will move closer together, and in addition,

other points A' and B' can be found on the surface of the antenna such

that the distance A'C and B'C differ by exactly three-halves wave length.

e),@
Fig. 6.2 Interference due to reflections from different parts of the

Antenna.

I

I

I

I

!

Thus as C moves away from the axis, there is more and more cancellation,

so that the net amount of energy striking C rapidly diminishes.

To theoretically determine the width of the beam at a distance R

from the antenna consider the diagram in Fig. 6.3. We want to find a

measure of the beam width, the smallest value of _, the distance from

C to the axis, such that there is total cancellation of energy arriving

from at least two points on the antenna. Clearly, the first two points
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on the antenna surface which provide such cancellation are those two

points in the sameplane as C and separated by the maximumdistance.

Therefore, let A be at one extreme of the antenna and B at the other,

separated by a distance d, the diameter of the antenna. Assuming that

R and _ are large compared to the dimensions of the antenna, and that

the wavelength, _ , is small compared to d, it is easy to determine the

I the value of _ in terms of wavelength, the
antenna diameter, and the

distance R. F,rst we find the point B' on the line C8 such that the dis-

I tanc_CA and CB' are equal. Since R is large, _' is nearly a right angle

andhence f _- _ Clearly, _ : _. andhence,the triangles BC'C
and AB'B are (nearly) similar. Thus

/' _. $

E; E, _ c. '
and since

1 _ • ..-._..--A_ = _" _--,_--4

and

in order that we obtain the desired cancellation,

C _ _ / and CC = t_ "_ _ "_ *

we have after substitution RA

and the beam width is proportional to _ X/_ . C

r

I i ' ' fl /

Determination of the beam width.
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This also demonstrates the important fact that as the diameter of the

antenna is increased, the beam width is made smaller.

Now we again consider the power received by a second parabolic antenna

of area A at a distance R from the first. S,nce the beam width is pro-
r

portional to _ its area is proportional to (_)_ and hence to _ ,kY_

The percentage of the power which is received, assuming _ _ _/J_ is

clearly proportional to the ratio of the area of the receiving surface to

the area of the beam, since all the power striking the antenna surface is

reflected to the focal point (assuming again a parabolic receiving antenna)

and hence to the receiver input. Consequently, designating by _ the

total transmitted power, and ¢ the total received power, we have

F

And finally, since the area of the transmitter antenna is proportional to

d2 we have

Actually, this heuristically derived result can be shown to be exact, so

that _ A_

•

This is a second form of the radar equation discussed previously.

As previously indicated, for non-ideal parabolic antennas, A r and A t

must be replaced by an effective area which aiwaysis somewhat less than

the true area. This is primarily because of the fact that it is difficult

to radiate the entire surface of the antenna with energy of equal magnitude

and equal phase. Typically, the effective area is 50% to 80% of the actual

area.

In order to maximize the amount of power received, or equivalently,

to maximize the gains of the two antennas, it is necessary to make the

parabolic antennas as large as possible and the wavelengths as short as

possible. First of all, there are practical limitations to the shortness

of the wavelength. One of these limitations stems from the fact that,

beyond a certain point, the effective noise temperature of the best ampli-

fiers increases sharply as the wavelength decreases, thereby counteracting
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the advantages in antenna gain. In addition, in order to realize the

theoretical gains of parabolic antennas, the dimensions of the antenna

must be accurate to within a fraction of a wavelength. S.nce the gain

increases in proportion to the area, it is advantageous to make the area

as large as possible. But the larger the area, the more difficult it is

to keep the tolerances within the necessary limitations. Thus, there is

a trade-off between the area and the wavelength. Horeover, because the

transmitting and receiving antennas are moving with respect to one another

it must be possible to move the ground based antenna so that this also

places restrictions on its size, (the fact that the vehicle antenna must

be propelled through space, of course, limits its size). Finally, the

transmitter antenna must be pointed in space with an accuracy proportional

to the width of the beam or the maximum energy is not received at the

receiver antenna. This clearly also limits the gain, and becomes parLi_u-

larly Significant at very short wavelengths.

Other than parabolic antenna designs are also sometimes used in space

telemetry. An omni-directional antenna which, ideally, radiates or

receives energy equally in all directions is always included on a space-

craft as a safety factory to enable transmission to and from the vehicle

regardless of its orientation in space. Evidently, this antenna has unity

gain in all directions.

Clearly, stationary antennas can be made much larger than those that

must be moved. Because space telemetry antennas must be accurately pointed

in space, stationary antennas are not useful for this purpose. It is

possible to get some effective direction change in stationary antennas by

properly controlling the position of the source which radiates the antenna

as well as the relative phases of the energy striking the various parts of

the antenna surface. Such antennas are particularly useful in radio

astronomy.
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13. Analog Modulation

Before studying some of the more recent and sophisticated modulation

techniques used in space telemetry communication systems, we shall present

some of the more conventional techniques of wireless long distance commun-

ications. Typically, a signal of the form

is generated at the transmitter. If the frequency F =_//_,f/"is sufficiently

high, this signal can be applied to an antenna and will cause an electro-

magnetic wave to be emitted into space. An electromagnetic signal

will then be present at a receiving antenna, where ._. = b/A represents

the attenuation due to the medium and the distance through which the

signal has traveled, and "_ the delay representing the time needed for

the signal to travel from the transmitter to the receiver. In particular

k does not vary with time, except perhaps for a slow steady change due to

a change in the distance between the transmitter and the receiver.

If A,L_, and g are kept constant at the transmitter, virtually no

information can be transmitted. The receiver is able to determine that

the transmitter must exist, but essentially nothing else. If, on the

other hand, any one, or a combination of these parameters is varied in

accordance with some rule known at both the transmitter and receiver,

information can be transmitted. Commonly, there is some time function

m(t) which represents, for example, a temperature or pressure

reading on a space vehicle, or a sound or light intensity as in commer-

cial broadcasting. Thus, for example, if A is made to vary proportionally

wi th _ (_-) _. e
/

the resulting "amplitude modulation" signal is capable of conveying

information. Similarly, if

or if

L,_, -

the signal is said to be "phase modulated" and "frequency modulated"

respectively. These three types of modulation will now be examined.
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H. Amplitude Modulation

The generation of an amplitude modulated signal is relatively straight-

forward. The signal m(t) is converted to a voltage intensity in accordance

with its amplitude (for example: a sound wave is passed through a micro-

phone). This voltage is amplified and multiplied by a signal

In addition, for reasons which will become apparent shortly, some unmodul-

ated signal is also added in. All of these procedures can be readily

accomplished electronically. The resulting amplitude modulated signal

is_hen transmitted.

index".

The spectrum of the signal

of the modulating signal m (t).

m(t) is the sinusoidal signal

The parameter /_ is referred to as the"modulation

_f-(_) is simply a frequency translation

To illustrate this, iet us suppose _+LII_

Then

= 17 c_-<-,-._

= A [ It

4

XL,_ c.<-_4- _-%.._] /--_"_ _ <- _: -t- u)

t lc >, ._.___A,\_" c_..._-_- ¢c_ ,_. f-
z2

and a modulating signal at the frequency _ = _/z

modulated signal leaving power at the carrier frequency o

frequency iI_c.t _ and at the difference frequency _ - F_

power spectrum of the modulating signal

results in a

at the "su_'

The

2..
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is represented in Fig. 8.1(a) and that of the modulated signal

in Fig. 8.1(b).

If _ were the maximum frequency and _ the minimum frequency of

the modulating signal ( as indicated for example, in Fig. 8.2(a)) the

frequency range of the modulated signal would extend from C*_'c- _H_ to

(_ F_I ) and from t_ _ i_" ) to _ _ _i_ , as in Fig. 8.2(b). The

bandwidth due to amplitude modulation has consequently been doubled.

2-

Lt

I
-F

[
C

Fig. 8.1a Power spectrum of a sinusoidal modulation signal.

fiA_

.,=-_

2.

_A

Y

(¢) S

AA_ . M(__ ".__

Fig. 8.1b Power spectrum of a carrier at frequency Fc

by a sinusoid of frequency Fo.
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Again, if the modulating signal were a sinusoid, the average power

The first term in the equation for _v

while the second represents _- A_=

signal. For a general modulating signal

average transmitted power is

p_ - A

represents the carrier power

times the power in the modulating

/_?(t) the expression for the

Z-

where

of the total power in the modulation is

_. is the averaqe power in the modulating signal.

% Power in Modulation =

/i
I

/

(a) Power spectrum of a modulating signal.

Z \ _" j_

a, / • J-

g- 4=

(b) Modulated signal spectrum.

The percentage

Fig. 8.2

\ P

F

Spectrum translation due to amplitude modulation.
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In order to obtain useful information from the signal x(t) at the

receiver, it is necessary to "demodulate" it to obtain the desired signal

-_H(t). An AM signal may be demodulated in a number of ways. The most

common technique involves the use of a non-linear element called a half-

wave receifier followed by a filter. The ideal half-wave receifier may

be regarded as a device whose output y(t) is related to the input x(t) as

follows: I o

A typical modulated waveform is shown in Fig. 8.3.

as _._,C.t)_ -/ , the signal x(t) is positive for

and negative otherwise, where 7-" = z_/_

It is seen that so long

f
J

FLg. 8.3

A

Ampl rude modulation and envelope detection.
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Consequently, the half-wave rectifier has the same effect on the received

waveform as if it were multiplied by the square wave in Fig. 8.4. As

previously established, the Fourier series expansion of this squsre wave

s(t) is

Then

which is just a sum of amplitude modulated signals. The product x(t) S(t),

therefore contains terms centered about the frequencies o _ 2 F 5 F
I "/ _/ /

as indicated in Fi 9. 8.5.

This signai is then filtered to remove the high F[_que,_cy components,

resulting in an output waveform /_(_ which ideally would be

as indicated in Fig. 8.3. That is, all but the desired term

can be eliminated by filtering, so long as

or equivalently if

< _m

where 4:M is the highest frequency in the modulating signal.

¢.

Fig. 8.4

I

I
I

I

. [ .

_='----7--_

A square wave of period T = I/F .
C
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Fig. 8.5 Spectral density of the product x(t) s(t).

Envelope detection of an amplitude modulated waveform is the simplest

technique that may be employed. The main disadvantage with this method is

that it is ineff_kcient since the received waveform is shorted by the

detecting diode wheneve_ the wave has a negative voltage, One method of

improvement is by the use of a full wave rectifier as the detector,

The common AM receiver used commercially today is the superheterodyne

radio receiver, a typical diagram of which is shown in Fig. 8.6. The

incoming signal passes through a tuned radio-frequency (r-f) amplifier

which can be tuned variably over the radio band 550 to 1600 KCo This

signal is then mixed with a locally generated signal. The sum and difference

frequencies are generated as above and contain a term centered at 455K0.

I

I

I

I

I

I

1

Zoc,q£

OE C It-i.R ToR

_ ^ Lf_EI<,¢

/
T u_alv_

Fig. 8.6

speaker
/

Superheterodyne AM receiver.
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The local oscillator and r-F amplifier are tuned together so that there

is always a difference frequency of 455KC/sec between them. The mixer

acts as a frequency converter, shifting the incoming signal down to the

fixed intermediate frequency of 455KC/sec. Several stages of amplification

are ordinarily used, with double-tuned circuits providing the coupling

between stages. The intermediate frequency (i-F) signal is then detected

as described above, amplified further in the audio-frequency (a-F) amplifiers

and applied to the loudspeaker. The superheterodyning operation refers

to the use of a frequency converter and fixed tuned i-F amplifiers before

detection.

I. Double and Single Sideband Modulation

While the method of AM communications described in the previous section

is quite satisfactory for commercial use, it has some iimiL_Lio,_s in those

situations in which the available power is limited. FLrst it will be re-

called, the demodulation scheme outlined requires that

To appreciate the significance of this limitation, suppose

then

,#

and if the modulation index, ,\ , is set at its maximum value, namely l, we

see that the percentage of power in the modulation is at most 33 I/3%.

To overcome this difficulty, consider the following demodulation scheme:

A narrow-band filter is centered about F and the output is used to estimate
c

the frequency and phase of the carrier.

Suppose the carrier is of the form /__z , z and the estimate

c_ _ --_ C _ _ JC- I_ c_

g is small. Then the signal can be demodulatedis made where presumably

by forming the product
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(,c) c -= ,LI c

.¢

which, after filtering the

Ac

•-_--_.c terms out, yields the desired signal

Note that in this scheme no limitations have been placed onthe maximum

or minimum values that _ .... (_) may take on. The only requirement now is

that there is enough power in the carrier to enable a good estimate of

its frequency and phase. IL is not apparent _L_ ._ •

previous AM system until we determine how much power must be included in

thecarrier for satisfactory results. In a later section we shall verify

however, that in a typical situation, less than I% of the total power need

be included in the carrier, thus allowing a substantial increase in per-

formance over conventional AM. Above we indicated that in conventional

AM, over 66% of the power is in the carrier. This technique of increasing

the proportion of power in the modulation by suppressing the carrier is

commonly referred to as "double-sideband, suppressed carrier modulation,"

DSB/SC.

An interesting modification of the double-sideband modulation system

is obtained by a technique known as single-sideband modulation, SSB. We

have noted that the power spectrum S(_) of an amplitude modulated signal

is symmetric about the carrier frequency. When ._._(t) is a sinusoid of

frequency _ the amplitude modulated signal contains a term at the

frequency _- , _ and a term at the same amplitude at _ - _ This

same symmetry occurs regardless of the signal _,-,(t).

Conventional AM or DSB modulation involves the product ._(t) c.. -a-_" .c

which, as we have seen shifts the spectrum of the-modulating signal shown

in Fig. 8.2(a) to the position indicated by Fig. 8.2(b). Now suppose the

signal _w;(t) z_-_. _ is passed through an ideal band pass filter with

the pass band
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The output then has the spectrum illustrated in Fig. 9.1. 4f this filtered

signal X'(t) is transmitted and demodulated by forming the product

i

and filtering out the high-frequency components, the resulting signal has

the spectrum in Fig. 8.2(_). That is, this resulting signal is identical

to the original modulating signal ,_,(t). But note that by filtering

before transmission, as described, only half as much bandwidth is needed

for SSB and for DSB modulation. As with DSB modulation, it is necessary

to transmit some carrier power in order to demodulate a SSB signal. It

can be shown that in the latter case however, the phase accuracy of the

estimate need not be as great as before to ensure the same performance

Fig. 9.1 Power spectrum for single side band modulation.

J. Noise Analysis of Amplitude Modulation Communications

The ultimate evaluation of any communication system rests in its

behavior in the presence of noise. A convenient measure of this behavior

is the output signal-power-to-noise-power ratio, often termed signal-to-

noise ratio. In the case of DSB and SSB modulation combined with product

demodulation, this ratio is readily determined. Consider first DSB modula-

tion. (When we refer to DSB modulation we intend double-sideband suppressed-

carrier modulation. The DSB/SC designation is somewhat redundant since

we denote non-suppressed carrier modulation by "conventional AM.") This
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received signal may be written

The total power in the modulation is _A _ where _ represents the

power in the modulating signal. The signal _(_) is demodulated by forming the

product _(t_c". _ and passing it through a low-pass filter with the cut-

off frequency 6 = _ The output due to the signal is therefore

where the subscript I.F. designates the low frequency components only. The

output signal power is consequently _A _ _ / the power in the modulation.
The output noise signal is

which simply represents a frequency translation of the noise _(_). Under the

assumption that the input is white, it remains white after the product is formed

and since the average power in the sin usoid is ½, the power spectral density of

._4_ (_) is one-half that of _(_) , i.e. ½ No . The output noise power is

consequently "_ P_/_I and the output signal-to-noise ratio DSB modulation is

S = z = T

J- IV_ _ --' /V_ .c"

where PT is the total received signal power)

-Z-/ A _ 4- -- =-I.:__ = 2_ 2.
/

When SSB modulation is used, although half the signal spectrum is suppressed,

the other half can represent twice the power as before, keeping the total radi-

ated power the same. After forming the product

and filtering as before, it is evident that the situation is identical to that

for DSB modulation. Hence

_c, bPr -
-I

A4
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where b
2

a and

is the amplitude of the received unmodulated carrier.

b2 can both be small compared to the modulated power

5 8 E- _c' J_

Note that in each case we are considering ideal systems in which the

unmodulated carrier power is negligible. The received signal _) is demod-

ulated by forming the product _(_) (_t. The demodulation scheme using

a half-wave rectifier, of course, will not achieve the performance indicated

here, (although at high signal-to-noise ratios the two methods give essentially

the same results for conventional AM). Because we are considering modulation

from the viewpoint of space communications and not as applied to commercial

radio and television, we are primarily concerned with how well a particular

modulation scheme can be made to work, not how well it works using inexpensive,

mass produced receivers. Thus we are only interested in the ideal system as

analyzed above, which can, by the way, be approached quite closely in practice.

This spares us the considerably greater difficulty of analyzin 9 the signal-to-

noise ratios resulting from the use of more common demodulators such as the

half-wave rectifier.

Since., generally,

K. Phase and Frequency Modulation

Communication systems are now studied in which the transmitted signal is

the "angle" O(z) varying in accordance with the modulating signal. If we define

the "instantaneous frequency" as the rate of change of the phase angle e(t) then

Jx=

Note that this corresponds to the intuitive notion of frequency when

e(t) -- o.., X -I- e.,

When _u varies with time however, the intuitive definition of frequency is some-

what less clear.

A phase modulation system is one in which the phase angle O(t) is allowed

to vary with the modulating signal, _(t):
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Frequency modulation on the other hand implies that the instantaneous frequency

-is made to vary wLLh /t4_(t)

and since

we have

cu (._) =
•4 _(-¢)

Then FH is essentially PM with the exception that the modulating signal in

the latter is the derivative of that in the former. For this reason, the two

types of modulation may be analyzed simultaneously as long as this difference

is borne in mind.

As with any modulation scheme, one of the first considerations when an

FM (or PM) signal is to transmitted is that of its bandwidth occupancy. Consider

the case in which the modulating signal is sinusoidai

Then

tD

and

= +

The quantity

/'3 = --------
Ct,

is defined to be the "modulation index" and is of fundamental importance in FM

systems. Hence,
,/

or equivalently we have
!
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Suppose for the moment, that t_ is small, say less than _/_£ . Then /_ co',

is always less that T//_¢ radius or about lO °, and to a good approximation

The frequency modulated signal then is approximately

which, except for a 90 ° phase shift in the modulated carrier, is exactly the

same as if the amplitude modulated signal

were transmitted. In general, if the modulating signal is _._('_t)the frequency

modulated signal may be approximated, for small modulation indicies, by the

signal
= A +Oo 

+ J,/r
Note that _ must be small for all frequencies of the modulating signal __

for this approximation to be valid. Specifically if ...,_(tJ has a frequency

component a,a_ .t , then a/_ _ must be small. When this situation holds,

the modulation is referred to as "narrow band FM". This is because the bandwidth

required is the same as that needed for conventional AM when the modulating

signal is _(_. In particular, if the highest frequency component of /_'_(_ is

#M' then the maximum frequency component of its integral is#M and the narrow-

band FM bandwidth is just 2fM, as it would be with conventional AM. When

is increased, however, it will be seen that the FM bandwidth can be considerably

greater than that necessitated by AM.

Suppose now that /3_ = & _ is large. Then the frequency deviation

Z_ f is large compared to the modulating frequency $o" In this case, the

frequency being transmitted varies from _ - _ to _÷_ and, importantly,

it varies between these extremes at a rate which is slow compared to the distance
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over which it varies. The transmitted signal could be approximated by a signal

at the frequency _ -/- Z3_ , followed some time later by a signal at the

frequency F_ _ _- - ,7_ r" , followed still later by _, -/- _-2_r'_ etc.

The important feature of this signal is the frequency extremes through which

it varies, not the relatively slow rate at which it changes frequencies. This

suggests that the bandwidth required for FM, when /_ is large, is approximately

_ _ = _ _3 _ instead of the value _ _o needed when _ is small.

When _ is on the order of I0 or greater, this estimate of the required band-

width is quite accurate and it is reasonably applicable even when /':_ is as

small as four, as the following rigorous analysis will verify. Since, when

G is large, the FM bandwidth is increased by a factor of _ over that needed

for AM, this modulation scheme is designated wide-band FM.

To rigorously analyze a sinusoidally modulated FM signal, we are basically

interested in determining the frequency components of the frequency modulated

carrier given by

But we note that both _(_.xJ-_4J.._land ,>,-_((J_ _.c) are periodic functions

of _._ As such, each may be expanded in a Fourier series of period 2 E/_<_,.

Each series will contain terms in N:; and all its harmonic frequencies. By

writing

the evaluation of these Fourier series may be carried out by determining only

one set of coefficients. For this we write the representation

where

/
0

je"

__c /

-,2-
_T



which is the n-th order Bessel function with the argument _ Bessel functions

are already tabulated for different values of /;_ and ,_ and can therefore be

assumed to be known. By equating real and imaginary terms, we obtain

and

Using these Fourier series expansions, and the utilizing the trigonometric

sum and difference formulas, we obtain

J

-0,'/

y 8 _ /5 zG

Fig. I1.1 Plots of Bessel functions of the first kind.
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We thus have a time function consisting of a carrier and an infinite number of

sidebands, spaced at frequencies ±_o z_ _ _3_etc. away from the carrier.
/ /

This is in contrast to the AM case, when the carrier and only a single set of

sidebands existed. The magnitudes of the carrier and sideband terms depend on

, the modulation index, this dependence being expressed by the appropriate

Bessel function. Fig. 11.1 gives a plot of the several Bessel functions of

the first kind.

In Fig. ii.Z is plotted an FM signal spectrum for a sinusoidal modulating

signal for various modulation



In FIg. 11.3 is plotted an FM signal for sinusoidal modulating signal for

a fixed _ =_o for various /3 These indicate the concentration of the

spectral lines and allow excellent approximations to bandwidth. As noted, the

bandwidth approaches zaFfor large _. (The FCC has fixed the maximum value

of aF at 75 KC for commercial FM broadcasting stations. Thus, if we take the

maximum modulating to be 15 KC, as is typically used as the maximum audio

frequency, then /3 = 5.)

(_ = 0,2-

I i f

(_=/,I I,
f-

tc z-,F =i /_ =/_

Fig. 11-.2 Amplitude frequency spectrum- FM signal, f®- fixed,
amplitude varying
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Fig. ll.3 Amplitude - Frequency spectrum - FM signal, AF fixed, fo varying

Note that since _ = _=_ _ in the case of frequency modulation,

8 -_ _A'F when _ is large and is independent of the modulating frequency

so long as the amplitude of the modulating signal does not vary with frequency

causing an effective variation in _. Thus if the average power in the mod-

ulating signal /_/(t) is the same for all modulating frequencies, i.e. if the

power spectrum of /_(t) is flat, then, on the average, the bandwidth occupancy

of the FM signal will not vary with the frequency of the modulatin 9 signal.

Since, as we shall show, the performance of FM is proportional to its bandwidth

it is desirable to have maximum bandwidth occupancy as consistently as possible.

With a phase modulated signal, the analysis is identical except that now

= _ and the bandwidth is _c-= ,_ . Thus, if the amplitude of the

modulating signal is independent of frequency, the bandwidth of a phase modulated

signal increases with the modulating frequency, a generally less desirable situ-

ation. On the other hand, ordinary speech and music exhibit the property that

the amplitude of a frequency component, beyond a certain frequency, tends to be

inversely proportional to the frequency. In this case, A_ _ _oo and the

bandwith B of a PM signal remains constant, independent of frequency, whereas

an FM bandwidth would decrease with increasing frequency. For this reason,

commercial FM modulating signals are preceeded by a "pre-emphasis" network
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which increases the magnitude of the higher frequency components by an amount

proportional to their frequency.

This is then counteracted by a "de-emphasis" network at the receiver which

reverses the operation. Commercial FM therefore is strictly neither FM nor PM

but a combination of both. Clearly, the distinction is irrelevant so far as

the system is concerned, the only difference between the two being that of a

preconditioning of the modulation signal.

Generally, then, an FM or PM modulation system is as illustrated in Fig.11.4.

A voltage controlled osciilator(VCO) is a sinusoidal oscillator, the output

frequency of which is proportional to the input voltage, that is, if the input

voltage is m (t) volts, the output frequency is _ _¢._-(_ cps.

There are a number of ways of implementing the block diagram in Fig. 11.4.

However, since we are interested primarily in the system aspects rather than

in its particular implementation, suffice it to observe that voltage controlled

oscillators can be desi9ned to give the desired performance over a wide frequency

range.

f
/./.,_ p., //=-v F _'

Fig. II.4 An FM transmitter.

L. Demodulation of Phase and Frequency Modulation

There are a number of ways in which an FM signal may be demodulated. Any

device which is capable of converting a frequency variation into an amplitude

variation can serve as an FM demodulator. Such a device is called a frequency

discriminator. Suppose, for example, that the FM signal is passed through a

filter with the characteristics

< <

Clearly, the output amplitude is proportional to the imput frequency desired

and the FM signal is thereby demodulated. This, in fact, is a somewhat
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simplified version of a commercial FMdiscriminator. In Fig. 1_.5, the. e is a

block diagram of a commercial FM receiver which will be described in more detail
later,

Another FM demodulator can be designed from the following point of view:

Suppose we have, at the receiver, a VCO which is identical to that at the

transmitter. If we then make a preliminary estimate of the amplitude of the

modulating signal and apply this to the VCO, the similarity between the output

of the MCO and the received FM signal will provide us with a measure of the

accuracy of this estimate. If we use the comparison itself to adjust the VCO

the system can be made to "track" the modulating signal. An illustration of

how this may be accomplished is given in Fig. ll.6. This device, called a

"phase locked loop" consists of a multiplier, a filter ,,,. , a VCO and a

device which shifts the phase of the VCO output by -90 °. To analyze its bei,_vior

suppose the signal _[¢is

and suppose the VCO output is

where

)
6_ _ (-_- 6'2 represents a "small" tracking error. Then the product -t[(},%(_)_

-_) is formed ieldingwhere _(_:) represents the shifted version of _-{ , y

A . 77-

f-)_ c--.-.',_ _ _ _.--,_--z. ,-.% _ f- (% -b '--'., 1--
2.,

The second term is a high-frequency correspondent and will be eliminated by the

combined action of the VCO and the filter

t tt- "" R-F Mi x £_

I
i.7._a

T
T°Ju tt_ ¢_OE'vl_£

t

Fig. II.5

A (-_. The low-frequency component is

Block diagram - commercial FM receiver.

.E L') E _1&

I

i it-)O O_'-"

I+._' P

I

,urPurJ
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7o °  /co

Fig. 11.6 A phase-locked loop.

The last approximation is based on the assumption that the phase error _ is small.

Thus _ is the input to the VC0. Suppose Oc_ is positive. Then the MCO
to

frequency is increasedAsomething slightly greater than up_ thereby decreasing

the difference between 01 and _z and hence decreasing (=)_ Similarily, if

_e is negative, the VCO frequency is decreased, again decreasing the absolute

value of the difference between _ and OL. The loop therefore acts to reduce

the phase error to zero.

Now suppose _ varies with time, _ = %(-_) The loop will again act in

such a way as to keep the phase error nearly zero. Then

The difference between the VCO center frequency °ac and its actual frequency is

proportional to its voltage input. Since the instantaneous frequency of the MCO

output is \7 d O, (-e)

<t _c.._ ..-e-. + 6. (.._.)j = C.,U -./-

the input to the VCO must have amplitude

I

[ where k is a constant of proportionality. Consequently, if the input to the loop

I is a frequency modulated signal Z-

d._ (,_> -- /',,o.4_ _("Z-'; d"_" ,

i then the input to the VCO is just

O

J (-eJ
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M. Noise Analysis of FH and PM

In order to determine the effect of noise at the input, let _(_1 -_-'_(_/

be white noise. Then

A (,.._ (.,_) -,/...,(x:) = .._ (;c) /I _ _,. ._ -','.-c__.e) r -.z, = _, ( _J

is also white noise, as was previously observed, and with the same power spectral

density, No/

Now consider the situation in which

and

where again, it is assumed

of the product .-F-(7c) _(_)

_._

@, (,_) - G_(_ is small. The low frequency term

i s given by

A_

\

Since _) is to be adjusted by the action of the loop to keep the error

signal and hence the input to. _[_) small, it follows that

and hence

Since the desired output is _ z3Ce,'._'_"-_I the term _ J___-_-_/_.! represents

output noise.

To determine the effect on the noise of taking its derivative, suppose that

it consists of a single frequency component

Then the derivative of the noise consists of the component

and hence has a magnitude equal to _ times the magnitude of the original noise.

In general, if the power spectral density of the whit_ noise is NO cps for all _,

the power spectral density of its derivative is just (_vrl) _ _.
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The signal-to-noise ratio at the output of the FM demodulator is determined

as follows: The power in t_ received signal _ _(_ is, of course

where P# is the power in the modulating signal. For the noise

-- R- = q/7" ,'voT

where B is the bandwidth of the output signal. Clearly 5 = "_ the maximum

frequency component of the modulating signal, since nc higher frequencies are

of interest. If the loop itself did not eliminate all frequencies greater than

fM cps, it could be followed by a low-pass filter which did. So the output

signal-tonoise ratio is

Recalling that, for large modulation indici.es , _ may be interpreted as the

ratio of the bandwidth needed with FM to that necessary for conventional AM or

DSB transmission, we see that the signal-to-noise ratio improvement in FM is

proportional to the square of this bandwidth multiplication factor _1_ •

Consequently, FM provides a means to obtain improved performance by increasing

the signal bandwidth. Since increasing the FM bandwidth by /3 achieves the

W'same results as increasing the signal power by , FM may also be regarded

as a method of exchanging power for bandwidth to keep the same performance.

The analysis of the signal-to-noise performances of PM follows along the

same lines as that for FM. except that rather than the signal _(Z) of Fig. il.6,

we are interested in its integral. That is, since

A

where, in this case, _(_) =_ _/,_(t), it follows that _= (-(_) is the

quantity of interest, not its derivative _-_.(_). Thus the input to the VCO
!

must be passed through an integrator in order to yield the desired output. The

output signal power is (_ _J" _-F

/

while the noise power is _-i /_/_ A_
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resulting in a signal-to-noise ratio

A -(5),

In the above discussion of phase-locked-loop demodulation of FM and Phi, we

have made some assumptions which should be emphasized. In particular, it was

assumed that conditions were such that the MCO phase output was sufficiently

close to the input phase that the approximation

was valid. However, the loop dynamics require that

/% (_)

Clearly, if the term _ represents a phase angle of, say, more than I0 °
A

then this approximation becomes unacceptable. But since the power of the

normalized noise _ within the bandwidth SM of the signal is N° F_ it

follows that _ m, lx) will be small compared to lO ° only so long as the term

is sufficiently small. As described, this analysis under these ideal

assumptions is a linear analysis and as such is an approximation to the inherently

non-linear phase locked loop. In general, it is necessary to require that

A

in order that all the assumptions made are reasonable. While the demodulated

signal may be meaningful for smaller value of _=/_ -F_ than 36, the per-

formance rapidly deteriorates as this ratio is further decreased.

Also, we have not specified the form of the filter A(_) . Clearly, it is

to be chosen if possible so that O=(¢)=_(_ regardless of the variation of

_(_ even in the presence of the noise ..¢4. C_).

Techniques are available for mathematically specifying the optimal filter

when the signal and noise spectral densities are known. Nevertheless, if the

normalized noise power N_ _/A is large, the difficulties mentioned above

remain, regardless of the filter _(_) .

This threshold effect when the noise becomes sufficiently large, is charac-

teristic of any FM demodulating scheme. Heuristically, it can be said that, since

the information conveyed in an FM signal is by the instantaneous frequency, a
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measure of the effect of the noise exists in the comparison of the position of

the zero crossings before and after the addition of the noise, it can be observed

that, as the noise increases, some zero crossings will be added by the additive

noise, while others will be eliminated entirely. When the noise reaches a

level at which this phenomena becomes realtively common, the demodulated signal

rapidly deteriorates.

An effective device which is used to reduce the noise is the limiter.

Since the information in the FM signal is in the instantaneous frequency, and

hence in the rate of zero crossings, and not in the signal amplitude, the signal

can be made to approach its original form by limiting its amplitude. This, of

course is accomplished without altering the position of the zero crossings.

Hence, the ideal limiter is inducted in commercial FM receivers, as indicated

in Fig. ii.5.

N. Other Applications of Phase-Locked-Loops

We now mention some applications of phase-locked loops other than FM and

PM modulation.

In the case of DSB and SSB modulation, it was suggested that the suppressed

carrier be tracked by a phase-locked loop in order to acquire a reasonably

accurate estimate of it which is necessary for product demodulation. The

analysis of the phase-locked loop in this situation is identical to that pre-

sented in the previous section with two exceptions: i) thephase of the received

signal O (x) is constant except for a small variation caused by instabilities

in the transmitter oscillator, movement of the transmitter relative to the

receiver, and perhaps by random fluctuations caused by transmission medium. It

is not caused to vary deliberately, and hence the bandwidth of _ _-_) is very

much less here than in the case of FM demodulation. 2) the desired signal is not

?(z_) but rather ._c_ ) since it is the carrier itself, not just its phase which

it is seen is
is to be estimated. The phase error of the estimate 7 -y-(-_))

.',41(_J_ , where a is the carrier amplitude and represents an effectivejust

phase error power /% 8 L/a- _ where _. is the loop bandwidth. Thus, since the

loop bandwidth 8z_ can be made very narrow, the phase error can be reasonably

small, even for quite small values of a. Since the phase error power _uo _/_, is

the expected value of the square of the phase error, the square root of this

quantity gives an estimate of the magnitude of the phase error which will be

,J / 'encountered. By requiring NoeI_ ,,_ to be less than 1/6 radian, for
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example, one can be reasonably sure that the phase error re_e.!:_s withi,_ tolerable

limits. It will be recalled that

p

S \ = 7"

where PT is the total power in the received signal, _/_ , the noise spectral

density, and 4=M the signal bandwidth. This was true under the assumption that

the ratio of the power in the carrier to that in the modulation was negigibly

small. Suppose, as an example, that it is required that the output signal-to-

noise ratio (_-_+ must be at least four, i.e. the signal power must be at+g

least four times as great as the noise power, a somewhat marginal condition+

Then

,,++c++:..).++ ..
--~+_-.+-:--- _ \ ,,,j+X_

or

and

Pr _ _L_/

Typically _ = _oOC_p_ while the effective loop bandwidth of the carrier

tracking loop can be made 1.0 cps or less. Thus

3
LO

and indeed, the required carrier power is negligible.

These same comments are equally applicable to any filter of bandwidth BL.

The advantage of the phase-locked loop over ordinary filters is that it is able

to track the signal, thereby requiring a much smaller bandwidth. Suppose, for

example, that in the course of a transmission the carrier frequency could vary

by aS much as 20 cps, actually a reasonably small variation when all possible

causes, such as doppler shifts and transmitter instabilities are taken into con-

sideration. A conventional filter would need a bandwidth of at least 20 cps in

order not to lose the signal entirely. If the rate at which the frequency varied

were small, however, the phase-locked loop could track it typically with a band-

width of ! cps or less.
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0_=. Pu__]IseModu.__._lationWe now consider digital modulation techniques as opposed to the analog

modulation systems discussed previously. Another term often used is pulse mod-

l ulation. Such systems are often used in telemetry communication systems whichis defined as a system which measures pressure, temperature, radiation, and

I| possibly other physical quantities, and transmits the information to a distant
receiver. To start, we restate the sampling theorem discussed presiously.

The sampling theorem states that we need only concern ourselves with per-

I iodic samples of a strictly bandwidth limited time function. 0nly the sequence

of numericdal values _C_T) need be transmitted. The complete function may

I be reconstructed at the receiver by generating a series of delta function of

area _C_FI and passing them through or Iowpass filter.

There are a number of advantages associated with sampled data telemetry

systems. We shall see that there are a number of elegant techniques that have

I been devised for transmitting sampled data, methods which simultaneously are
relatively easily implemented and achieve large signal-to-noise ratio. This is

usually accomplished at the expense of additional bandwidth.

Also, it is often considerably earier and more efficient to handle sampled

data than continuous data. Typically, a space,

sources. Some method must be employed to keep

separate. One method for doing this is called

consists of forming the products

_7c_ (_) _ _

for each data signal _ (_), _ = J, _ j _

must be chosen such that the sFec_ra of each s

I in Fig. 15.1. The waveform

I then has thecomposite spectrum in Fig. 15.1 an

source with a bandwidth

Fig. 15.1 frequency multiplexing.Composite spectrum of
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spacecraft may contain i00 to i000 data

the information from each source

is called frequency multiplexing, which

/V- The frequencies -_ = L_../=_

the spectra of each signal does not overlap, as shown

and _(_) may be treated as a single



W = _J, _- _ _-L

where VJ; is the bandwidth of the process --/- (_) . S;nce the individual

spectra do not overlap, the different signals _,(_) can be reconstructed at

the receiver by proper filtering. Unfortunately, this method demands that each

source be followed by a device for forming the product _)z_(_.,_.L,_.._, a

prcedure which is quite inefficient, particularly on board a spacecraft, at is

adequate and is used in commercial FM stereo multiples transmission, for which

case N = 2).

The alternative is to sample each of the signals 1-_(_t) represent the

samples as pulses of duration T/N where T is the sampling rate. We here assume

that all signals have the same bandwidth so that 7"-= t_z_v is the same For

all _(_ . Finally time multiplex the samples as indicated in Fig. 15.2.

The pulse labeled i corresponds to a sample of the process _y- (_)o If the

bandwidth of the pulses are not the same, the sampling rates must be different,

or all rates must be equal to that required by the signal with the lar9est band-

width. Different sampling rates can readily be accomodated as long as they are

integrally related. That is, suppose for example, oz;(_ has a bandwidth

which is twJ, ce as great as _(_) and the two are to be time multiplexed. Since

7(-_(c) must be sampled twice as often as -_1(_) they can be multiplexed as

in Fig. 15.3. Thus, in time T, two samples of _p(_) are transmitted while

only one sample of _-z(&) is transmitted, and both are sampled at the correct

rate.

A time multiplexing system involves only the problem of commutation Or the

interspacing of samples from the various sources at the proper rate. No power

consuming auxiliary equipment is required other than a moderate number of

swtichin9 devices.

Fig. 15.2 Time multiplexing.
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FIg. 15.3 Time Multiplexing of signals with unequal bandwidths.

It might be supposed that, since each data signal is only being observed

for an infinitesimal fraction of the time, the bandwidth requirements could be

considerably reduced, Actually th_s is not the case, for recall that the band-

width B necessary to transmit a signal which exhibits variations of interest

on the order to every "_" seconds must satisfy the inequality _ _ ///'z-_-. The

sampling theorem states that a signal of bandwidth W must be sampled at least

every 7-= _w seconds. If this amplitude were transmitted as a .pulse, the

pulse could last only T seconds before the next sample must be sent. Thus the

pulse width cannot be greater than _ = 7- = _/v_and, hence, the bandwidth
/

oc-c-upan_cy must be, at least (_- z_ -_vV the bandwidth of the signal. The

same comment applies to multiplexed signals; frequency multiplexed signals

require a bandwidth at least as great as the sum of the bandwidth of the

individual signal

W = (15.2)

(Actually, the bandwidth defined in Eq. (15.1) is about twice this value. How-

ever, it will be recalled that by employin 9 single s[deband transmission the

bandwidth may be halved without any loss of information. Thus, in the case of

sinqlessideband frequency multipiexin9 the above ststement holds. This could

be done, of course, only at the expense of additional equipment). A time mul-

tiplexed system involving N data sources has only T/N seconds per pulse as was

seen in Fig. 15.2. Thus, the bandwidth is increased by a factor of N in the

case of equal signal bandwidths V_ = V_j _ ,- _NW ) 8 =N .
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SimHarly, the frequency multiplexed signal bandwidth has increased by the same

factor under the same condition as seen from Eq. (15.2). If the bandwidths

are not equal, the frequency multiplexed signals can be spaced more efficiently,

in general, since there is no necessity that the sampling rates be integrally

related. However this advantage is offset by the necessity of single-sideband

multiplexing to avoid increasing the bandwidth by a factor of two.

P. Pulse Modulation Systems and Matched Filtering

In the sections that follow a number of pulse modulation methods will be

discussed. In order to simplify the discussion, it will be assumed that the

data input to the transmitter consists of a sequence of samples at some average

rate, say R samples per second. Thus each sample has T= _/_ seconds in

which to be transmitted. It is ur, important whether this sequence comes from

one source or is the time multiplexed output from a number of sources. A pulse

modulation system involves the transmission of a particular waveform ._vt ('_t)

representing the sample in question for a period of time T seconds. The trans-

mitted signal therefore, is allowed to change form only every T seconds.

Before preoceeding to discuss various pulse modulating schemes in more

detail, it is of interest to consider the generic form of the demodulators

for pulse modulation. The pulse modulated signal, as observed, is characterized

by a waveform ._:(_) which is transmitted without interruption for the time

interval V_-<._ (V_) 1" . There may be a finite or a continuous number of

waveforms _(_) which can be transmitted during each interval. (If the signal

can assume a continuum of amplitudes for example, i may be infinite; if it is

only desired to know the value of the amplitude to say, three decimal places,

or if there are only a finite number of amplitudes possible, i may be finite).

of waveforms _F_ (_)_ which can be transmitted is known at theThe set

receiver. The received signal will be perturbed by noise so that it will gen-

erally not match exactly any of the signals in this set. Suppose the signal /w,_L -.)

is transmitted and the signal _(_) = A _--_(a)_(_)is received where A is

assumed to be a known constant. Hopefully _(_-) will resemble t{_,_}-(_) ,m°re

closely than it resembles any of the other signals in the set _/_. f_)_. If

not, there is little chance of making a correct decision as to the transmitted

signal. An ideal receiver would then have knowledge of the entire set J

and determine that waveform which most nearly resembles the received signal.
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But howdo we measure how closely one waveform resembles another? One method

might be to determine the average value of the difference between the received

waveform and each of the possible waveforms

_ rt) T

J
_ T

c/" .'E

and estimate the received signal as that corresponding to the _ with

minimum absolute value. This would not be particularly effective, of course,

since ._/x) could be much greater than /_%(X)over part of the interval,

and must less over the remainder of the interval, and still yield a value of

C-.) ..t. C> An approach which avoids this difficulty ( and in fact, one

which can be shown to be optimum for many situations, including that normally

encountered in space communications, is to determine the mean squared error;

'1 VT

If ....,-_1.,._ _ :- _ the receiver concludes that the received signal was

_41, ,/t) Note that

(vr,)T

. -T T 1 _T
*, VT

and since the first term on the right is independent of j and the last is just

the power in the j
th

signal, the optimum signal i[ that for which the quantity

tv r{J 7-

I

is amaximum. Here E. represents the energy in the jJ
(,_'t,) r

= __' ( ._)
T J _(

_T

th
signal .4._.(#).. The term

t
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is called the cross-correlation between the signals y(t) and ,_1 (m). Consequently

such a receiver is frequently called a .correlation receiver. Another common

designation is a matched-filter receiver. The process, of course, is repeated

for all integer values of _ , so long as signals are being received.

._.. Puls.e Amplitude Modulation PAM

Perhaps the most obvious method for transmitting sampled data is pulse

amplitude modulation. If the data sample is X_, the signal A __* is

transmitted VT <.l_<Cvf_7- the received signal then becoming
' /

(_)= B_ _._'. As discussed in the presious section, the optimum detector forms

the quantity

_x Ye T zT" "_

LY* '] T ,,) T

YT YF

for every possible amplitude x i of the received signal, and selects the largest

of those as the best estimate of the received signal. But a condition that the

quantity _[_f_TJ-- _ E-_ be a maximum is thatz.T "=

(v ,,)T - E.
2-7- "

_(_. ,_

There will be in general, a phase and probably even a frequency shift between

the transmitter and the receiver. However, this will cause no difficulty so long

as the received phase and frequency are determined at the receiver and used to

generate the local signals _(_. This knowledge will be assumed here so

that the phase and frequency shift can safely be ignored.
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o_ that

where the carrier frequency _ has been chosen to be some multiple of half the

reciprocal of the pulse period _ -_ = c,J_ - "-_ for some integer k. The
_" z_ 27-

optimum estimate x v of the amplitude of the received signal, then is

(.v, ,) 7-

.4 __!_t j
Y

PT

and the receiver is simply that illustrated schematically in Fig. 17.1,

It should be noted that this estimate requires knowledge of the amplitude

B of the arriving signal, a parameter seldom known to the receiver. It is a

parameter which can readily be estimated however.

Fig. 17.1 A PAM detector.

f

(,.H_ 0 7"- I

/._7-
I

To determine the signal-to-noise ratio at the output of a PAM detector, we

note that the output signal may be written
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where _ is the output due to the received signal, and ,_ that due to the noise.

The output signal power therefore is just the power P in the modulating signal
x

x(t),( the fact that x_ is a time-quantized version of x(t) does not alter its

average power). As we have noted several times, multiplying white noise by a

sinusoid does not alter its whiteness but alters its spectral density by a

factor of ½. It can be shown that the integrator acts as a filter with a noise

bandwidth _ - z T-" so that the output noise power is _,, z T _ (the B2

term due to the fact that the noise has been divided by B, the noise power there-

fore is reduced by the factor _ ). The output signal-to-noise ratio is conse-

quently

= _- ( ! ..; i

An interesting measure of the effective bandwidth of a signal is afforded

by asking the question" How far in frequency must different communication channels

be separated if the cross-modulation between any two of them is to be kept to an

insignificant level? Suppose, in fact that a number of PAM channels were to be

operated simultaneously at the carrier f_eq_encie_ _o _ = I z ..... Then
th

the effect of the signal in the i

demodulator is simply

/37- ,.,-
J

V_

th
channel on the output of the j channel

-'. -e'r / ( )

I"T

u

zBT

L_

(Y,))T

C - .
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which is identically zero if (_u _ ,.A,J _-_ are all non-zero integer
"/ 1/ }

multiplies of the term _J7-. Thus in order to keep the cross-modulation zero

it is necessary to separate the channels in frequency by an amount 7C - _- --_/z_

for any value of _ = / z/ .... The effective bandwidth of each channel is

therefore __ = _--_r --W_F,_where W is the bandwidth of the sampled signal.

Consequently, Eq. (15.3) may be rewritten in terms of the effective bandwidth

to yield

_

Note that this is exactly the same relationship that was obtained for SSB

modulation.

R. Phase-Shift Keyed Modulation (PS_

Another rather common pulse modulation technique, called phase-shift keying,

is to transmit the signal

to convey the data xp . Here of course, _ _y- _ z TT in order that there be

no ambiguity at the receiver. Thus the phase, rather than the amplitude, conveys

the information in a PSK system. The advantage of this method over PAM module-

.L_ _. _h=f the amDl itude of the signal remains constant Thistion rests in L,,_ ,_ .......... .

is not an insignificant advantage in space telemetry since transmitters which

work at a constant amplitude are considerably more efficient than those which

must produce variable amplitudes.

The optimal PSK receiver, since the received signal energy is now independent

of x must form the integrals

PT

for all O_L% < Zl-/-

b, r,) -r-

pJ

and select the largest. But this expression may be written

PT"

--- _, (__a. _.
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The maximum of these with respect ¢o x. must satisfy the condition that
I

or that

A

Thus the optimum estimate of _¢ _ _ = _-'Y-_- and the optimum receiver is
Y v X

that depcited in Fi 9. 18.1

YT

f,

1

.V

Fig. 18.1 A PSK detector.
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It is observed that in the absence of noise,

and

(I-',J) T

I J o

while

P

(t- _ Tt I T-

VT

Fi

TZl

2_ Y

where it is again assumed that -_'= _7__ for some integer k.

T
Hence

'f I)<r = --
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and the estimate of the signal is exact in the absence of noise. Additionally,

note that this system does not require knowledge of the signal amplitude for its

operation. The evaluation of the performance w!ll certainly depend on the

amplitude of the received waveform. The analysis of the output signal-to-noise

ratio for PSK is somewhat more involved than that for PAM and will not be

carried out here. The results of such an analysis, however, would indicate per-

formance approximately equal to that of PAM. In addition, it is easily verified

that essentially the same comments concerning the spectrum of a PAM signal as

well as its effective bandwidth occupancy apply equally to u PSK modulated signal.

(The effective bandwidth occupancy of a PSK signal is acutally twice that of a

PAM signal).

S. Pulse Code Modulation (PCM)

In all of the modulation schemes discussed up to now, it has been possible

to transmit any of a continuum of amplitudes (gene_rally assumed to be bounded

by finite values). But several observations strongly suggest that this is not

necessary. In the first place, regardless of the use to which the receiver of

the information intends to apply it, he can never use more than a finite number

of significant di9its for each sample. If for no other reason, the accuracy of

the measurin 9 device is always limited to some degree. Moreover, the noise

_-* ._ A=e= will _nntain some inaccuraciesencountered at the receiver insures L,,o_ .................

nullifying the meaningfulness of all but t4_e most significant digits in the

received samples. Thus, so far as the receiver is concerned, it is of little

consequence whether or not the data is quantized in amplitude as well as in time.

Because many of the measurements are inherently digital in nature anyway (the

outputs of cournters, [or example) it may be of same advantage to quantize all

the information so that it may all be processed uniformly on the spacecraft. But

is there any advantage so far as the communication system itself is concerned,

to quantizin 9 all analogue signals before transmission? The answer is emphatically

yes, as the following analysis of a pulse-code modulation system will illustrate.

Since all the data is to be quantized, the communication system need be

concerned with only a finite number of signals _.(_. In particular, suppose

the quantized information is represented in binary form. If the output of a

device were quantized to four levels, for example, the possible outputs could
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be represented by the four two-digit numbers

°/

/o

I/

In general, if the output is quantized to M levels, each possible output can

be represented by _--_ /V_ (or the smallest integer greater than ./_}/IA if it

is not an integer) binary symbols or bits. (Of course, bases other than the

binary base could be used, but binary systems possess certain distinct advan-

tages and are by far the most commonly encountered).

A pulse-code modulation (PCM) system is one in which each of the binary

digits used to represent a data sample is individually transmitted as one of

two possible waveforms. That is, if the bit is a one, some signal _ (_) is

transmitted for a duration of T B seconds; if it is a zero some other signal

is transmitted for the same duration. Then the next bit is similarly trans-

mitted, etc. Typically, _J_ (_)=-'_,_ The PCM correlation receiver is. shown

in Fig. 19.1. Note that if A._(_ is equal

d_

Fig. 19.1 An optimum PCM detector.
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to --_j('_) only one iiltegrator is needed. The comparator then decides tha: a

one was received if the integrator output is positive, and that a zer__owas

received if it is negative.

To analyze the output signal-to-noise ratio using this modulation method,

let us assume that the ratio of the received signal power to the noise power

is sufficiently large so that it is most unlikely that .-_tj(',_> can be mistaken

for _,4d z (_) at the receiver, or conversely. The significance of this

assumption wi]| be investigated shortly. We observe that in this case the

noise is just that due to the fact that the signal is quantized. That is, if

the sampled signal is .s(_.-) -- ..s(vT), yT ,c."t" <L_tOT the quantized signal

57 (,PT) is transmitted. Since no mistake is made at the receiver in identi-

fying each of the digits representing sf ('-_) this signal is recovered

exactly. Thus the mean-squared noise at the receiver is just

(V *,) -/- 7. _-

VT

Suppose the signal is equally likely to assume any amplitude from -a to a, and

that the quantization is such that

when

Then, while the signal varies between the extremes of -a and a is equally likely

to have any value in that range at any given time, the quantization error varies

between _ and and is equally likely to assume any value in that range.

Recalling the interpretation given to the signal-to-noise ratio, we see that we

have reduced the uncertainty in the amplitude of the signal by a factor of M

upon the receipt of the quantized signal S_ (Z) . If signals are to be

transmitted every TO seconds, and each one is to be quantized into _==_ levels
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then each bit has only

T T

seconds in which to be transmitted. Recall that the previous pulse modulation

systems have shown a strong dependence on the amount of time spent in trans-

mitting any particular waveform. This dependence is equally true here. If,

for example, _1_ (_) : --_l'_) and the average power in the signal .-,...:_' at

the receiver is g and the noise spectral density id NO , then it is usually

sufficient to require that
L

2 _,:,

in order that the two signals ._: _¢i and ,_,'_, can be distinguished reliably

enough at the receiver to justify the assumption made in this derivation.

Again, as in the case of PAH, the effective bandwidth necessary to trans-

mit a pulse of time duration TB is

/

Thus cof,dition 19.1 becomes

:_, _._.-_-

and is consequently analogous to the condition in section 18 for the FM

threshold.
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